
����������
�������

Citation: He, H.; Shi, P.; Zhao, Y.

Hierarchical Optimization Algorithm

and Applications of Spacecraft

Trajectory Optimization. Aerospace

2022, 9, 81. https://doi.org/10.3390/

aerospace9020081

Academic Editors: Lorenzo Casalino

and Mikhail Ovchinnikov

Received: 23 November 2021

Accepted: 29 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Hierarchical Optimization Algorithm and Applications of
Spacecraft Trajectory Optimization
Hanqing He , Peng Shi * and Yushan Zhao

School of Astronautics, Beihang University, Beijing 102206, China; hanqing_he@buaa.edu.cn (H.H.);
yszhao@buaa.edu.cn (Y.Z.)
* Correspondence: shipeng@buaa.edu.cn

Abstract: The pursuit of excellent performance in meta-heuristic algorithms has led to a myriad of
extensive and profound research and achievements. Notably, many space mission planning problems
are solved with the help of meta-heuristic algorithms, and relevant studies continue to appear. This
paper introduces a hierarchical optimization frame in which two types of particles—B-particles
and S-particles—synergistically search for the optima. Global exploration relies on B-particles,
whose motional direction and step length are designed independently. S-particles are for fine local
exploitation near the current best B-particle. Two specific algorithms are designed according to this
frame. New variants of classical benchmark functions are used to better test the proposed algorithms.
Furthermore, two spacecraft trajectory optimization problems, spacecraft multi-impulse orbit transfer
and the pursuit-evasion game of two spacecraft, are employed to examine the applicability of the
proposed algorithms. The simulation results indicate that the hierarchical optimization algorithms
perform well on given trials and have great potential for space mission planning.

Keywords: meta-heuristics; hierarchical optimization algorithm; multi-impulse orbit transfer; space-
craft pursuit-evasion game

1. Introduction

In the last twenty years, the rapid development of meta-heuristic optimization algo-
rithms has promoted the extraordinary progress of widespread engineering applications,
including variable selection in chemical modeling [1], pattern recognition [2], path plan-
ning of UAVs [3], feature selection [4] and data clustering [5]. Doubtlessly, the powerful
capabilities of parameter optimization are beneficial to space missions planning, such as
spacecraft rendezvous trajectory optimization [6], interplanetary trajectories by multiple
gravity-assist [7], agile satellite constellation design [8] and spacecraft attitude maneuver
path planning [9]. In order to effectively apply the meta-heuristic algorithms to the space
mission planning, on the one hand, constructing an appropriate optimization problem
model is of vital importance. On the other hand, it is valuable to improve the performance
of algorithms, which is the focus of this paper. Compared with traditional mathematical
programming methods, meta-heuristic algorithms attract the attention of a large number of
scholars due to four characteristics: simplicity, flexibility, derivation-free mechanism and
local optima avoidance [10]. Relevant research can be divided into three types: proposing
new optimization algorithms, improving existing algorithms and applying existing algo-
rithms to practical problems. Apparently, new algorithms are most noteworthy for their
new mechanisms to provide inspiration for other methods.

To design a highly applicable meta-heuristic algorithm, researchers have abstracted
phenomena and laws in the real world into mathematical descriptions, from which a
great number of algorithms were born. Genetic Algorithm (GA) [11] imitates Darwinian
evolution theory and is a pioneer of multitudinous evolutionary optimization algorithms,
including Evolutionary Programming (EP) [12] and Differential Evolution (DE) [13]. Typical
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mechanisms in this type of algorithm include selection, crossover and mutation, which have
been extensively embedded in other algorithms to improve their performance [14]. To date,
improved evolutionary algorithms are still studied by researcher [15]. The hybridization
of evolutionary algorithms and local search operators produces the memetic algorithm
(MA) [16], in which the local search is used to improve search efficiency. The efficiency
and effectiveness of the local search mechanism depends on three principal components:
the pivot rule, the iteration condition and the neighborhood generating function. The
strategy of local search can be fixed or adaptive, according to the performance of multiple
operators [17]. The primary characteristic of MA is the evolutionary operators used in
global exploration, and multitudinous algorithms have been proposed to design and
combine appropriate local search strategies to better solve the problems.

Individuals in evolutionary algorithms are relatively independent, and the connection
depends only on crossover between individuals. Swarm intelligence (SI) optimization
can strengthen and consolidate the connection. Particle Swarm Optimization (PSO) [18] is
one of the most popular SI algorithms, which is inspired by the behavior of birds flocking
in nature. In PSO, every particle makes decisions about its movement by self-cognition
and social cognition. Self-cognition is the historical best position of a particle, and social
cognition means the position of the current best particle. Improvement of PSO is proposed
by many researchers to attempt to eradicate the shortcomings of premature convergence
and lack of dynamicity [19], and to enlarge the applying scope [20]. A review of PSO was
conducted by [21]. A mechanism of learning from the best particle has been introduced to
many SI algorithms, such as Firefly Algorithm (FA) [22], Grey Wolf Optimizer (GWO) [10],
Harris Hawk Optimization (HHO) [23], etc. For more detailed information about reviews on
swarm intelligence and evolutionary algorithms, [24] is recommended. There are also many
optimization algorithms designed according to physical phenomena and mathematical
operations, including Simulated Annealing (SA) [25], Gravitational Search Algorithm
(GSA) [26], Sine Cosine Algorithm (SCA) [27] and Arithmetic Optimization Algorithm
(AOA) [28]. While there are already many optimization algorithms, there are still new
optimization algorithms continually being proposed. The No Free Lunch (NFL) theorem is
an explanation for this phenomenon [29], which proves that no algorithm is able to handle
all problems well. Therefore, this motivated us to propose a new method for optimization.

The optimal solution for space mission planning problems is usually difficult to find,
due to the complex landscape of the search space, which ultimately leads to algorithms
obtaining suboptimal solutions. The reason is that the process of solution search has two
phases: exploration for global search and exploitation for local search. Considering the
contradiction between the two phases, existing algorithms usually switch from exploration
to exploitation over the iterations, and strive to balance the ratio of two phases to increase
the search efficiency. However, the algorithms pay heavy penalties for extricating from
the vicinity of suboptimal solutions. If an algorithm can simultaneously perform both
exploration and exploitation over the iterative search, the search efficiency will be improved.
The goal of this paper is to solve this problem to a certain extent.

In this paper, a new swarm intelligence two-hierarchy optimization frame (HOF) is
proposed. The core idea of HOF is the rational allocation of limited computing resources,
namely the number of function evaluations. Motivated by the trends of the local search op-
erations incorporated in memetic algorithms, we designed the HOF by endowing the best
individual with additional function evaluations as a reward to enhance the search ability of
the best individual compared with others. The strategy of HOF is to generate two types of
particles, B-particle and S-particle, to search the variable space in two hierarchies, respec-
tively. Therefore, the total number of function evaluations is determined according to the
iteration numbers of two hierarchies, the B-particle number and the S-particle number. In
the search of the first hierarchy, a certain number of B-particles explore the space iteratively.
The motion direction and step length of B-particles are determined separately to improve
the designability of algorithms and increase the exploration efficiency of B-particles. In
each iteration of B-particles, the best B-particle has additional function evaluations pro-
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vided by the local search of the second hierarchy, in which a certain number of S-particles
iteratively exploit the neighborhood, and the best result is returned to update the position
of the best B-particle. The number of function evaluations is a constant predefined and
identical to the total number of generated S-particles. Two specific algorithms, HOA-1 and
HOA-2, are designed based on HOF, and the difference lies in the local search methods of
S-particles. In both algorithms, B-particles, except the best one, iteratively search the space
by referring to the best two B-particles. In HOA-1, S-particles perform a pattern search by
iteratively searching the space dimension by dimension, and the search step length in each
dimension is a uniformly distributed random number with stepped decreasing bounds
with the increase in the iteration number of first hierarchy. In each iteration of the second
hierarchy, S-particles in HOA-2 are generated simultaneously based on a set of Gaussian
distributions, which are iteratively updated according to the positions of the current best
two function values.

To test the effectiveness of algorithms, the benchmark functions test is a popular
method. However, some existing algorithms perform well in solving benchmark functions
whose solutions are the origin of the search space, and an obvious performance degradation
appears when the solutions deviate a little from the origin. Considering this unreasonable
phenomenon, twenty-three variant benchmark functions are designed. In contrast to
regular benchmark functions repeated solving, we set a random position deviation to
the solution of the benchmark function, while keeping the minimum value invariant.
Therefore, these variant benchmark functions were solved by the two proposed algorithms
and seven existing algorithms repeatedly. Besides the benchmark functions test, two
spacecraft trajectory optimization problems were solved by proposed algorithms and
compared algorithms. The first problem was the spacecraft multi-impulse orbit transfer
between two coplanar orbits, and the target was to find the optimal velocity impulse vectors
and corresponding time. The second problem is the two-spacecraft pursuit-evasion game
solved by the multiple shooting method, and the target is to find a set of appropriate costate
variable initial values.

The rest of this paper is arranged as follows: Section 2 gives a statement about
the optimization problem to be solved. Section 3 describes HOF and two algorithms
systematically. The performance tests of proposed algorithms on benchmark functions
and trajectory optimization problems are respectively presented in Sections 4 and 5. The
conclusion is given in Section 6 ultimately.

2. Optimization Problem Formulation

Optimization problems cover a wide range of subproblem types, which can be single-
objective or multi-objective, unconstrained or constrained, static or dynamic. The focus
of this work is to solve the static unconstrained single-objective optimization problem
(SUSOP), since other types of problems can be studied by introducing more techniques
and mechanisms into the achievement of SUSOP. Stochastic/heuristic optimization tech-
niques have been extensively employed to handle optimization problems, and explicit
reviews in [10,27] may help interested readers gain a comprehensive understanding of the
development in this field.

This section gives a brief description and definition of the problem to be studied
in the following work. Usually, a minimization problem is formulated to represent the
optimization problem, as follows:

Minimize : f (X)
X = (x1, x2, . . . , xN−1, xN)

T

lbi ≤ xi ≤ ubi, i = 1, 2, . . . , N
Ub = (ub1, ub2, . . . , ubN)

T

Lb = (lb1, lb2, . . . , lbN)
T

(1)
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where lbi and ubi are boundary values of the ith element of state variable X due to the
restrictions on an N-dimension search space in numerical calculation. The continuity of
function f means that a best solution must exist in the search space, even though the global
optima may not be located in this space, especially for those problems in which it is difficult
to stipulate the search space, for instance, when it is necessary to search for the initial values
of costate variables in two-point boundary problem solving.

To find the best solution of the SUSOP, abundant algorithms have been proposed.
Meta-heuristic algorithms are one kind of method quite popular over recent decades. A
typical feature of meta-heuristics is the random factor, which leads meta-heuristics to
receive different results so as to increase the probability of finding the optimal solution. A
meta-heuristic algorithm (MHA) can be formulated as follows:

X∗ = MHA( f (X), X0, {P}) (2)

where f (X) is the optimization function with a given search space, X0 is the initial values,
{P} is the parameter set including constant and varied parameters, and X∗ is the solution of
f (X) obtained by MHA. The performance of MHA is significantly influenced by the values
of {P}. However, the focus of this work is to design the search strategy, while the values
of parameters are intuitively set and manually adjusted by the simulation results in the
following paper.

3. Hierarchical Optimization Algorithm

The structure of HOF is outlined in this section. Subsequently, two specific algorithms,
HOA-1 and HOA-2, are provided and their differences are discussed.

3.1. Hierarchical Optimization Frame

In this paper, we used particles to represent the individuals in SI algorithms. For
SI algorithms, a popular idea is to use the position of the current best particle (CBP) to
guide other particles’ motion, which makes the exploration and exploitation in the search
space more effective and efficient. However, CBP itself seldom obtains benefit from this
strategy. To alleviate this limitation, HOF was proposed to enhance the search ability of
CBP by performing a local search and giving it additional function evaluations. HOF
includes two hierarchies: H1 is the first hierarchy and H2 is the second hierarchy. In H1, a
certain number of particles called B-particles are used to iteratively search for the global
optimum. Therefore, the CBP in HOF is the current best B-particle. In each H1 iteration,
B-particles cooperate to iteratively update their positions based on the current information
of search results. Generally, only one function evaluation is conducted to complete the
position update of each B-particle except CBP, whose position update depends on the local
search of H2 iterations and requires more function evaluations. In H2, particles of another
type called S-particles, initially distributed in the neighborhood of CBP, are assigned to
iteratively exploit the space. After a predefined constant number of S-particles are randomly
generated, the position of the best S-particle becomes the updated position of CBP based
on the greedy strategy. The iterations of two hierarchies are executed in turn until the
maximum number of H1 iterations is reached. Note that B-particles converge as the H1
iterative search progresses, while S-particles dispersedly exploit the local space from the
initial position of CBP. Ib and Is are the maximum number of iterations in H1 and H2, which
means that Is times H2 iterations proceed after each H1 iteration, and the stopping criterion
is Ib times H1 iterations have been performed. The total number of function evaluations is
determined according to the iteration numbers Ib and Is, the B-particles number and the
S-particles number. The whole frame is modularized and illustrated by Figure 1, in which
the orange blocks represent adjustable sub-algorithms. A 2-D sphere function was used
to show the CBP’s update process in one H1 iteration with its subsidiary H2 iterations. In
Figure 2, Figure 2a shows the positions of eight B-particles, in which the CBP is represented
by a red marker, while other B-particles are blue markers. Four S-particles, marked by
pentagrams, were used to perform the local search in the neighborhood of the CBP, and
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their initial positions and final positions are respectively given in Figure 2b,c. The best
S-particle was selected to update the CBP’s position after H2 iterations, and is denoted by
the green marker in Figure 2d.

Figure 1. Flowchart of HOF.

Figure 2. Update process of CBP in HOF.
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There is no specific formula given in the flowchart in Figure 1. To design specific
algorithms, we designed an iterative method for B-particles used in this paper, while other
methods are also applicable. In H1, we culled the best two B-particles in each iteration
and set them as two leaders, L1 and L2, to guide the motion of other B-particles in the next
iteration, except for L1’s position, which was determined by the result of H2 iterations.
Each SI algorithm has its own way of deriving particle propagation, including two aspects,
the direction and the step length. The velocity computation of PSO provides a particle’s
motional direction and step length simultaneously. In comparison, the direction and step
length of bacteria are computed respectively in Bacterial Foraging Algorithm [30], in which
the direction is a unit vector randomly produced in the searching space, and the step length
is a small predetermined value to meet search accuracy. Both algorithms have respective
advantages and limitations, which inspired us to separate the determination of searching
direction and step length to strengthen the algorithm’s flexibility and adaptability for
different optimization problems.

Since the search direction and step length are calculated respectively, we used positions
of L1 and L2 to derive a particle’s direction update formula by

Dn
i =

c1(L1n − Bn
i ) + c2(L2n − Bn

i )∥∥c1(L1n − Bn
i ) + c2(L2n − Bn

i )
∥∥ (3)

where Bn
i indicates ith B-particle’s position in nth iteration in H1, L1n and L2n represent the

positions of L1 and L2 in nth iteration respectively and the parameters c1 and c2 control the
weights of L1 and L2 to Bn

i . The symbol ‖·‖ means the Euclidean norm of a vector. With
the inconsistency of L1 and L2, the denominator of Dn

i is always larger than 0, which averts
the singularity. Assuming L1n exerts more influence on Bn

i than L2n, we set c1 > c2 > 0.
The step length of Bn

i is given by

deltaBn
i = α(‖L1n − Bn

i ‖+ ‖L2n − Bn
i ‖)/2 (4)

where α is the step ecoefficiency between 0 and 1 to directly tune the searching range of Bn
i .

In total, the updating equation of Bn
i in H1 iteration is constructed as follows:

Bn+1
i = Bn

i + deltaBn
i · Dn

i (5)

note that the update mechanism of B-particles is deterministic, due to the constant values of
c1, c2 and α, which is not best, but effective. Further study on the autonomous adjustment
of these parameters can be conducted by introducing randomness or adaptive laws.

L1n is actually the position of CBP in nth H1 iteration. Different ways to generate and
update S-particles can construct many specific algorithms, one of which may better solve
the focused problem. Two hierarchical optimization algorithms are introduced in the next
subsection, and their difference lies in the local search method of S-particles.

3.2. Two Hierarchical Optimization Algorithms

Considering the performance differences caused by the different searching methods
of S-particles, two hierarchical optimization algorithms, HOA-1 and HOA-2, are proposed
to validate the effectiveness of HOF.

3.2.1. Formula of HOA-1

The searching method of S-particles can be divided into two steps: initialization and
iterative update. The initialization is to determine the spatial domain and the position
distribution law. The first step is to set a spatial domain of initial S-particle positions. A
gradually shrinking domain makes a fine effect, because S-particles are used to search the



Aerospace 2022, 9, 81 7 of 27

neighborhood of CBP. In order to simplify the algorithm, we designed a function to control
the boundary of this domain in Equation (6).

deltaSn =
(Ub− Lb)

F(n/T)
, n = 1, 2, . . . , Ib (6)

where F(·) is an operator to tune the range of deltaSn in nth H1 iterations, Ub and Lb are
the boundary of the search space defined by (1), and T is a parameter to control the phased
variation of search precision. In HOA-1, F(·) is defined in (7).

F(n/T) = 10−bn/Tc−c (7)

The symbol b·c indicates rounding down the variable. This function means the domain
stays invariant for T times H1 iterations, and shrinks to one tenth in the next T iterations,
and c is a constant used to determine the initial search precision. Generally speaking, we
suppose that a better position exists within a hypercube centered on CBP, and take deltaSn

to set the length of its edges.
In HOA-1, the number of S-particles is equal to the dimension N of the problem to be

solved, which results from the idea that changing the value of CBP’s position dimension by
dimension serves to precisely search the space around CBP.

In H2 iterating process, the reference point Pr is used to update the positions of S-
particles, and the initial Pr is the CBP of the B-particles in the current H1 iteration. Once
a better position is found, it becomes the new Pr of the next H2 iteration. Let Sm

j be the
position of jth S-particle in mth H2 iteration. The updating equation of Sm

j is constructed as
follows:

Sm
j = Pr + rs · IN,j · deltaSn(j), m = 1, 2, . . . , Is (8)

where IN,j is the jth column vector of a N-order identity matrix IN , deltaSn(j) is the jth
element of deltaSn, and rs is a random number uniformly distributed in the interval of
[–1,1]. After H2 iterations, the final Pr is output to renew the position of CBP if its function
value is smaller. The HOA-1 algorithm is summarized in Algorithm 1.

Algorithm 1 Pseudo code of HOA-1.

Generate initial Bi
1 (i = 1, 2, . . . , p)

Calculate the fitness of each B-particle f(Bi
1)

Choose L1 and L2
Starting H1 iterations:
while 1 (n < Ib)

for 1 Bi
n

if 1 Bi
n doesn’t equal L1n

Update the position by (5)
else

Starting H2 iterations:
Input CBP’s position as Pr and fitness as fr and deltaSn by (6)
while 2 (m < Is)

for 2 Sj
m(j = 1, 2, . . . , N)

Generate Sj
m by (8)

if 2 f(Si
m) < fr

Pr = Si
m

end if 2
end for 2

end while 2
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Output Pr as CBP’s updating position
end if 1

end for 1
Update L1 and L2 according to f (Bi

n+1)
end while 1
return the final L1

3.2.2. Formula of HOA-2

In HOA-1, the way S-particles search for a better solution is by changing only one
element of Pr in a given domain to generate a new S-particle that is uniformly distributed in
the hypercube. To design a different search strategy, a new algorithm HOA-2 is proposed in
which the number of S-particles can be specified arbitrarily, every element of each S-particle
is obtained from a Gaussian distribution, and all elements are changed simultaneously. To
determine a suitable Gaussian distribution, the mean value µ and the standard deviation σ
should be defined. Thus, the positions of L1 and L2 are input to the H2 optimization, and µ
and σ can be given as follows: {

µ1
n = L1n

σ1
n = abs(L1n − L2n)

(9)

where µ1
n and σ1

n represent the first µ and σ in the H2 optimization of nth H1 iteration,
respectively. The operator abs(·) is used to replace all elements of the vector with their
absolute values. This specification stems from the assumption a better position exists closer
to L1 than L2. Given that the range of this parameter setting is sometimes too large, another
specification in Equation (10) is proposed, which is also subject to the above assumption.{

µ1
n = (2L1n + L2n)/3

σ1
n = abs(L1n − L2n)/3

(10)

The difference between Equations (9) and (10) is illustrated in Figure 3, in which
the curves are the probability distribution density functions of two ways. It shows the
interval constrained by Equation (9) is obviously larger. Due to the high probability of the
generation of new S-particles between L1 and L2 by using Equation (10), this specification
is preferred when the best solution is encircled by S-particles.

Figure 3. The difference between two specifications of µ and σ.

To guarantee the validity of this estimation for better solutions, µ and σ are updated
after every H2 iteration, which leads to the necessity of selecting and updating the best
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two S-particles, namely SL1 and SL2. Using SL1 and SL2 to severally replace L1 and L2 in
Equations (9) or (10) can update µ and σ in each H2 iteration.

When the iterations in H1 proceed, if no other B-particle takes over these two particles,
the difference between L1 and L2 becomes small, which makes the search space in H2 too
narrow for S-particles to help CBP find a better position. With that in mind, a lower bound
for σ is introduced to prevent S particles from being limited to a cramped space search. As
with the restriction on deltaSn, Equation (11) gives the definition of σ and σmin.

σmin =
(Ub− Lb)

F(n/T)
, σm

n =

{
abs(SL1m − SL2m), abs(SL1m − SL2m) ≥ σmin
σmin, else

(11)

where σm
n is σ in mth H2 iteration of nth H1 iteration, and SL1m and SL2m are positions of

SL1 and SL2 in mth H2 iteration, respectively. Therefore, based on the setting of µ and σ in
Equation (9), the updating equation of jth S-particle Sm

j in mth H2 iteration is constructed
as follows:

Sm+1
j, k = Zk, Zk ∼ N(SL1m

k , σm
n (k)) (12)

where the subscript k means kth element of a vector and σm
n (k) is kth element of σm

n .
Likewise, the setting of µ and σ based on Equation (10) can be derived, but is omitted
here. The HOA-2 algorithm is summarized in Algorithm 2. To maintain the relative
independence between H1 and H2, only SL1’s final position is output to update CBP’s
position.

Algorithm 2 Pseudo code of HOA-2.

Generate initial Bi
1 (i = 1, 2, . . . , p)

Calculate the fitness of each B-particle f (Bi
1)

Choose L1 and L2
Starting H1 iterations:
while 1 (n < Ib)

for 1 Bi
n

if 1 Bi
n does not equal L1n

Update the position by (5)
else

Starting H2 iterations:
Input the position and fitness of L1 and L2
while 2 (m < Is)

for 2 Sjm(j = 1, 2, . . . , q)
Generate Sjm by (12)

Update the position and fitness of SL1 and SL2
Update µ and σ by (9) and (11).

end for 2
end while 2
Output SL1q as CBP’s updating position

end if 1
end for 1
Update L1 and L2 according to f (Bi

n+1)
end while 1
return the final L1

HOA-1 and HOA-2 share the same H1 and differ from the search mechanism in H2,
which manifests more optimization algorithms that can be proposed based on HOF. By
introducing more mechanisms into HOF, such as evolutionary operators, simulated anneal-
ing mechanism and other effective mechanisms, a new algorithm with better performance
can be accomplished.
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3.3. Comparison with Other Algorithms

The concept of hierarchical optimization has been used in algorithm design and
some results have been employed in single-objective optimization and multi-objective
optimization. In [31], a hierarchical algorithm (HGA-PSO) was developed to construct
two-layer optimization, in which the bottom layer, responsible for exploration, is based
on GA, and the top layer, for exploitation, adopts PSO. The bottom layer includes many
subgroups searching for the best solution independently. After each iteration in the bottom
layer, some excellent individuals of every subgroup are brought together to form a new
group to continue cooperative search in the top layer. Until the termination conditions
are met, k individuals are selected randomly from the top layer to substitute random k
individuals of every subgroup in the bottom layer before the next iteration starts. An
external archive is established to store the results of the top layer search, and subgroups
choose k individuals from the archive [32], which eliminates the negative influence of
initialization and randomness of individuals in the top layer by outputting the final solution
from the archive. Compared with the hierarchical optimization methods mentioned above,
the HOF is based on a competition mechanism, which is analyzed in detail in Section 4.2.2
through simulation examples, instead of combining the best individuals from multiple
subgroups to conduct a cooperative optimization. In [33], a multiagent collaborative search
(MACS) method was proposed for local exploration of the subdomain generated by the
branching method. Multiple agents were generated in the given subdomain and used
to explore this subdomain by elaborate collaboration mechanisms. Afterwards, MACS
was further developed based on a combination of Tchebycheff scalarization and Pareto
dominance to solve multi-objective optimization problems [34]. Compared with MACS, the
exploitation of S-particles around CBP is quite different. The most obvious difference is that
S-particles locally search the space around CBP independently, while strong information
interaction exists between agents in MACS. Also, a search subdomain is firstly determined,
and then the population of agents is introduced and updated to search this invariant
subdomain, while the local search space of S-particles varies with the position update of
the current optimal solution.

Regarding the H2 optimization as the local search of H1 optimization, the frame of
HOF is similar to memetic algorithms. Therefore, a further comparison of two proposed
algorithms and existing algorithms is conducted from the point of view of the local search.
An adaptive gradient descent-based local search was introduced in MA [35], in which
the numbers of individuals considered in local search, the search steps and iterations
decreased linearly during the iterations. However, the gradient calculation requires ad-
ditional function evaluation to generate a new individual, which leads to the important
task of determining the ratio of the function evaluations of gradient calculation to the total
evaluation number. In HOA-1 and HOA-2, the local search of S-particles proceeds without
gradient information, and accordingly, once function evaluation occurs when generating a
new S-particle. The local search mechanism of HOA-1 can be classified as a pattern search
method with random factors. The stepped decreasing upper bound of iterative step length
of S-particles in each dimension is related to the iteration number of H1, and differenti-
ates HOA-1 from other local pattern search methods, for example, the memetic algorithm
combining PSO and pattern search refinement [36], and multi- coordinate search [37]. This
stepped decreasing mechanism of search step guarantees the search ability of CBP, even if
all B-particles converge in the early iterations of H1 and avoids the local minima.

Another point worth demonstration concerns the Gaussian distribution used in HOA-
2. Kennedy proposed a Bare Bones Particle Swarms Optimization (BBPSO) in 2003 [38], in
which every particle’s position update is obtained by the Gaussian distribution defined
by the best particle position and its historical optimal position. Then, many researchers
improved the mechanism of Gaussian distribution parameter setting to increase its search-
ing efficiency [39,40]. In these algorithms, the weight of best individual in defining the
Gaussian distribution parameters is identical to other individuals, due to the balance of
exploration and exploitation during the iterations. In HOA-2, the weight of L1 or SL1 is
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determinately bigger than that of L2 or SL2, because it adopts the hypothesis that the solu-
tion is closer to the best particle than other particles. Understandably, this hypothesis leads
to closer distances between sampled particles and the best particle, and thus causes the
premature convergence. Therefore, this hypothesis has a negative effect on the exploration
and is rejected by existing algorithms. However, only the best one of sampled S-particles
is selected to update the position of the CBP, and other S-particles have no influence on
the iterative exploration of B-particles, which allows an increase in the weight of the best
particle. In HOA-2, the S-particles are simultaneously sampled based on the same set of
Gaussian distributions in each H2 iteration, and these Gaussian distributions are updated
according to the positions of two best S-particles Sl1 and SL2. However, each particle
in BBPSO has its own set of Gaussian distributions, which means that only one particle
is sampled based on these distribution functions. The multiple sampling based on the
Gaussian distributions can better exploit the neighborhood of the best particle, while the
randomness of single sampling brings a negative effect to the local search. The local search
methods based on covariance matrix adaption also utilize multiple dimension Gaussian
distribution to describe the sampling subdomain around the center of selected individu-
als [41]. However, this type of algorithm emphasizes the adaptive laws of the covariance
matrix and step size, without considering the weights of dominant individuals.

4. Experiments on Benchmark Functions

In this section, twenty-three benchmark functions are used to validate the performance
of HOA-1 and HOA-2 compared with other optimization algorithms. Then, analysis and
discussion about the results are elucidated.

4.1. Explanations of Performance Test

For comprehensive inspection of optimization algorithms, twenty-three benchmark
functions, which consist of three types of functions—unimodal, multimodal and fixed-
dimension multimodal—were utilized in [10]. To better examine the performance of pro-
posed HOA-1 and HOA-2, we designed variants of these twenty-three benchmark functions
instead of directly using them to testify the overall effectiveness. The origin benchmark
functions are listed in Tables A1–A3 in Appendix A. We introduced skills of variable
substitution to shift the theoretical solution of each benchmark function in the searching
space, while keeping the minima unchanged. The variable substitution can be expressed as
xi = yi − ri, where ri is a random value in [(19ubi + 21lbi)/40, (21ubi + 19lbi)/40] which
covers 1/20 of the range of ith dimension search space. Taking F1 sphere function as an

example, the actual fitness function is
30
∑

i=1
(yi − ri)

2, the range of each dimension is still

[–100, 100], and ri is a uniformly distributed constant in [–5, 5], which means the extreme
point is no longer the coordinate origin but a random point near the origin. Solving the
minima of F1 function repeatedly, the theoretical value is always 0, while the position
is R = [r1, . . . , r30]

T , which is determined by the results of random sampling before the
optimization starts. In this way, the efficacy of algorithms emerges more clearly.

In contrast to the proposed algorithms, seven algorithms were introduced as compari-
son algorithms, including three classical algorithms: GA, DE and PSO, and four recently
proposed algorithms: GWO, Butterfly Optimization Algorithm (BOA) [42], HHO and AOA.
The parameters of these algorithms are defined in Table 1. The numbers of iterations Imax of
all these contrastive algorithms were all set to 500, and the population size was 30. Since two
hierarchies exist in HOA-1 and HOA-2, we set Ib to 100 and Is to 4 for the sake of fairness,
which guarantees a smaller number of function evaluations in HOA-1 and HOA-2 than in
those of the compared algorithms. Because different benchmark functions require different
search precision, the parameter T in HOA-1 and HOA-2 is defined correspondingly.
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Table 1. Parameters setting.

Algorithm Parameters

GA Pc = 0.8, Pm = 0.2, Pr = 1.5
DE F = 0.3, CR = 0.2

PSO ωmax = 0.9, ωmin = 0.4, c1 = c2 = 2
GWO a = 2(1-i/Imax), i is the current iteration
BOA a = 0.1 + 0.2 × i/Imax, i is the current iteration, c = 0.01, p = 0.8
HHO β = 1.5, J = 2(1-r5), r5~U(0,1)
AOA α = 5, µ = 0.5

HOA-1 α = 0.3, c1 = 1, c2 = 0.3, c = 1
HOA-2 α = 0.3, c1 = 1, c2 = 0.3, c = 1

These algorithms were executed 30 times to solve each benchmark function on a
laptop with an Intel(R) Core (TM) i7-10510U CPU at 1.8 GHz and 16.0 GB of RAM. All
these algorithms are coded in MATLAB R2020a.

4.2. Results and Discussion
4.2.1. The Performance

The results of previous experiments are arranged meticulously, and the data are
displayed in Tables 2–4, in which the best results obtained by nine algorithms for each
benchmark function are presented in bold. In these three tables, B, A and S respectively
stand for the best result, the average value and the standard deviation. The results of
benchmark function test are given in Tables 2–4, in which the minimum values of these
benchmark functions are bold. In the unimodal benchmark functions test, HOA-1 and
HHO both found the best solution of three of the seven functions, and showed outstanding
exploitation ability, according to Table 2. Furthermore, the results of the multimodal
functions test in Table 3 illustrate that the exploration ability of HOA-1 is superior to other
algorithms. For local minima avoidance, the data in Table 4 demonstrate that all these
algorithms performed similarly, while HOA-1, DE and PSO had a weak advantage on the
others. To statistically display the performance of tested algorithms, the Friedman test [43]
was used to reflect the performance, and the result is listed in Table 5, which proves the
advantage of HOA-1 over other algorithms. The p-value of the Friedman test was 8.8089−15,
suggesting the existence of significant differences among the tested algorithms. Generally,
HOA-1 outperformed other algorithms in the benchmark functions tests. Compared with
HOA-1, HOA-2 performed better in F15 than the others. However, it should be noted
that HOA-2 is also an effective algorithm, because the mean rank of HOA-2 was fifth
among the nine algorithms according to the Friedman test result in Table 5. The reason
HOA-1 performs better than HOA-2 in benchmark functions test can be explained by two
factors. The first reason is the small number of Is which makes it difficult to fully embody
the advantages of Gaussian distribution multiple dimensions sampling in HOA-2. The
second reason is that the landscapes of benchmark functions are simpler than the actual
engineering problems. Therefore, a one-dimensional position update used in HOA-1 can
efficiently search the space.

The history of minimum-value searching of benchmark functions is diagrammed
in Figure 4. The gentle decrease in the fitness value means the exploitation search was
effectively conducted, while the sharp or even vertical decline reflects a better result found
by the exploration search. From this point of view, the exploration abilities of GA and
HHO are outstanding, and the exploitation ability of HOA-1 is conspicuous. The stepped
attenuation of search step length of S-particles attributes more to the descent slope changes
in HOA-1 and HOA-2. Note that the number of function evaluations, which is equal to the
number of individuals generated in the search space, is used as the coordinate of x-axis.
Accordingly, the coordinates of the x-axis of the final minimum values of HOA-1 and HOA-
2 are not the same as other compared algorithms, due to the smaller function evaluations
number, which is amplified and shown in the subplot of F1 function in Figure 4.
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To dissect the search process and convergence of two proposed algorithms, we selected
F1, F8 and F14 to represent three types of functions with which to analyze the characteristics
of iterative search. The fitness history curves of solving three functions by HOA-1 and
HOA-2 are delineated in Figure 5. The fitness history curves show that B-particles in HOA-1
converge faster than those in HOA-2, while B-particles in HOA-2 have better potential for
local minima avoidance, which is reflected by the intermittent sharp decline during the
iterative search in Figure 5b,c. The initial and final positions of all B-particles of the search
in HOA-1 and HOA-2 are displayed in Figures 6 and 7, respectively. Note that the positions
of B-particles are represented by the first two coordinates. The B-particles gathered in a
subdomain of the search space after the iterative search, which demonstrated that both
algorithms possess the ability to drive B-particles to converge and find a high-precision
solution.

Figure 4. Searching history of benchmark functions.



Aerospace 2022, 9, 81 14 of 27

Figure 5. The history fitness curves solved by HOA-1 and HOA-2 for (a) F1; (b) F8; (c) F14.
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Table 2. Results of unimodal benchmark functions.

F HOA-1 HOA-2 GA DE PSO GWO BOA HHO AOA

F1
B 3.28 × 10−16

T = 6
3.16 × 10−7

T = 15
6.73 × 10−9 1.12 × 10−8 1.13 × 10−3 1.88 × 10−6 68.0 2.43 × 10−6 0.134

A 8.87 × 10−16 9.34 × 10−6 1.33 × 10−8 1.13 × 10−2 0.0157 3.18 × 10−2 407 0.0106 0.172
S 3.28 × 10−16 8.63 × 10−6 3.78 × 10−9 0.0542 0.0127 0.0153 155 0.0241 0.0157

F2
B 4.38 × 10−10

T = 8
1.05 × 10−4

T = 15
1.92 × 10−4 4.92 × 10−6 0.0568 0.174 0.225 9.46 × 10−3 1.65

A 0.237 5.21 × 10−4 3.74 × 10−4 8.67 × 10−6 0.175 0.417 2.39 0.0489 1.81
S 1.10 6.26 × 10−3 9.17 × 10−5 2.57 × 10−6 0.819 0.137 1.67 0.0368 0.0763

F3
B 75.7

T = 40
35.2

T = 30
1.14 × 10−18 1.54 × 104 40.8 2.27 72.9 3.62 × 10−4 14.1

A 314 189 7.04 × 10−11 1.88 × 104 99.7 6.93 497 0.142 73.1
S 146 89.5 2.75 × 10−10 2.64 × 103 35.9 2.74 325 0.231 107

F4
B 0.0302

T = 35
0.664

T = 30
0.804 3.59 0.931 5.38 × 10−3 12.2 1.52 × 10−5 0.500

A 0.136 2.39 1.76 6.26 1.35 0.274 16.0 4.94 × 10−3 0.504
S 0.191 1.24 0.547 3.15 0.240 0.212 1.33 3.78 × 10−3 6.63 × 10−3

F5
B 0.173

T = 40
14.7

T = 30
N/A 21.8 33.3 36 29.0 5.76 × 10−4 183

A 52.6 41.1 N/A 112 190 64.1 29.1 0.0186 223
S 33.2 23.8 N/A 81.8 223 14.6 0.158 0.0256 15.0

F6
B 1.36 × 10−18

T = 10
3.35 × 10−7

T = 15
1.55 × 10−5 5.82 × 10−9 3.59 × 10−3 5.80 × 10−5 140 3.37 × 10−8 2.57

A 2.82 × 10−18 3.51 × 10−5 4.93 × 10−5 6.82 × 10−4 0.0201 0.718 465 9.17 × 10−5 3.20
S 1.03 × 10−18 5.63 × 10−5 3.46 × 10−5 3.67 × 10−3 0.0217 0.365 162 1.29 × 10−4 0.286

F7
B 0.0135

T = 70
0.0329

T = 25
0.0303 0.0818 0.168 0.0923 0.204 5.99 × 10−5 0.684

A 0.0480 0.0747 0.0916 0.198 0.377 0.191 0.299 9.79 × 10−4 0.724
S 0.0192 0.0228 0.0364 0.0572 0.147 0.0500 0.0691 1.11 × 10−3 0.0133
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Table 3. Results of multimodal benchmark functions.

F HOA-1 HOA-2 GA DE PSO GWO BOA HHO AOA

F8
B −9.19 × 103

T = 40
−10.0 × 104

T = 25
−1.21 × 104 −1.26 × 104 −8.23 × 103 −7.51 × 103 −3.53 × 103 −1.26 × 104 −6.21 × 103

A −7.40 × 103 −7.83 × 103 −1.13 × 104 −1.24 × 104 −5.56 × 103 −5.95 × 103 −2.67 × 103 −1.26 × 104 −5.44 × 103

S 604 924 399 142 1.53 × 103 924 372 0.941 405

F9
B 1.99 × 10−6

T = 40
10.9

T = 10
6.51 × 10−5 53.7 39.3 5.77 177 4.19 × 10−5 33.9

A 1.02 × 10−4 39.0 2.34 × 10−1 65.0 68.5 19.3 210 0.0219 37.3
S 3.44 × 10−5 18.1 0.493 7.29 16.7 8.04 15.5 0.0238 1.46

F10
B 4.21 × 10−7

T = 7
0.0255

T = 30
1.05 × 10−3 3.06 × 10−5 0.0380 1.36 × 10−3 9.13 2.90 × 10−4 0.379

A 0.211 1.54 2.73 × 10−3 0.0209 0.473 0.175 10.5 7.91 × 10−3 0.435
S 0.636 0.772 1.09 × 10−3 0.109 0.530 0.0738 0.557 6.15 × 10−3 0.0322

F11
B 2.60 × 10−8

T = 20
2.52 × 10−7

T = 15
6.08 × 10−6 3.91 × 10−8 1.64 × 10−4 7.66 × 10−4 13.0 6.18 × 10−6 0.0324

A 0.0339 0.0106 3.81 × 10−3 1.02 × 10−3 0.0107 6.87 × 10−3 19.3 1.51 × 10−3 0.253
S 0.0276 0.0123 2.08 × 10−3 2.69 × 10−3 9.58 × 10−3 9.10 × 10−3 2.50 2.60 × 10−3 0.196

F12
B 6.87 ×

10−12
T = 20

1.71 × 10−6

T = 30
3.47 × 10−11 5.44 × 10−10 2.93 × 10−5 0.667 1.01 5.85 × 10−8 7.33

A 4.15 ×
10−11 2.18 3.84 3.07 × 10−3 3.68 × 10−3 1.36 5.08 2.48 × 10−5 8.58

S 6.81 ×
10−11 1.44 6.03 8.78 × 10−3 0.0186 0.408 5.27 3.43 × 10−5 0.412

F13
B 8.78 ×

10−14
T = 15

1.92 × 10−6

T = 20
3.41 × 10−13 3.27 × 10−9 5.68 × 10−4 0.346 2.85 2.21 × 10−6 4.76

A 3.67 ×
10−13 0.0505 0.0549 0.151 9.20 × 10−3 0.999 3.03 3.92 × 10−4 5.27

S 2.04 ×
10−13 0.137 0.236 0.523 7.49 × 10−3 0.367 0.0993 3.41 × 10−4 0.192

Table 4. Results of fixed-dimension multimodal benchmark functions.

F HOA-1 HOA-2 GA DE PSO GWO BOA HHO AOA

F14
B 0.998

T = 25
0.998

T = 25
0.998 0.998 0.998 0.998 0.998 0.998 0.998

A 8.04 2.71 7.51 1.16 3.13 3.58 3.13 1.097 6.47
S 0.0139 1.87 4.30 0.885 2.43 3.32 2.35 0.298 1.64

F15
B 3.09 × 10−4

T = 20
3.07 × 10−4

T = 25
5.55 × 10−4 4.97 × 10−4 3.70 × 10−4 3.60 × 10−4 8.53 × 10−4 3.08 × 10−4 8.56 × 10−4

A 8.48 × 10−3 2.01 × 10−3 2.85 × 10−3 7.65 × 10−4 8.98 × 10−4 5.61 × 10−3 0.0173 4.03 × 10−4 0.0199
S 0.0139 4.92 × 10−3 5.08 × 10−3 2.03 × 10−4 2.64 × 10−4 7.04 × 10−3 0.0270 2.21 × 10−4 0.0207

F16
B −1.03

T = 20
−1.03

T = 30
−1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03

A −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.02 −1.03 −1.03
S 2.57 × 10−12 1.22 × 10−5 2.14 × 10−9 0 0 7.11 × 10−8 0.0120 1.24 × 10−7 1.56 × 10−7

F17
B −0.398

T = 20
0.398

T = 30
0.398 0.398 0.398 0.398 0.398 0.398 0.398

A −0.398 0.398 0.398 0.398 0.398 0.398 0.937 0.398 0.411

S 1.83 × 10−12 1.89 × 10−8 1.65 × 10−9 2.66 ×
10−15 1.11 × 10−16 1.50 × 10−4 1.41 4.84 × 10−5 7.51 × 10−3

F18
B 3.00

T = 20
3.00

T = 40
3.00 3.00 3.00 3.00 3.02 3.00 3.00

A 3.00 3.00 3.00 3.90 3.00 5.70 10.7 3.00 23.3
S 9.42 × 10−11 1.78 × 10−5 1.60 × 10−7 4.85 4.40 × 10−15 14.5 7.62 2.06 × 10−8 21.1

F19
B −3.86

T = 20
−3.86

T = 40
−3.86 −3.86 −3.86 −3.86 −3.84 −3.86 −3.86

A −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.53 −3.86 −3.84

S 4.83 × 10−13 9.00 × 10−7 3.48 × 10−8 2.66 ×
10−15 3.00 × 10−3 5.43 × 10−3 0.288 6.04 × 10−3 8.22 × 10−3

F20
B −3.32

T = 30
−3.32

T = 40
−3.32 −3.32 −3.32 −3.32 −3.09 −3.26 −3.21

A −3.28 −3.30 −3.28 −3.32 −3.29 −3.24 −2.27 −3.07 −3.04
S 0.0573 0.0476 0.0573 1.68 × 10−6 0.0503 0.119 0.467 0.0997 0.119

F21
B −10.1532

T = 80
−10.1489

T = 80
−10.1532 −10.1532 −10.1532 −10.1529 −6.11 −10.1508 −5.91

A −6.31 −7.20 −5.88 −8.84 −6.89 −9.646 −2.83 −8.4191 −3.20
S 3.46 3.41 2.97 2.43 3.37 1.516 1.49 2.2256 0.850

F22
B −10.4029

T = 80
−10.3931

T = 80
−10.4029 −10.4029 −10.4029 −10.4028 −8.55 −10.4028 −7.87

A −5.98 −7.29 −5.76 −10.002 −9.52 −10.225 −2.91 −8.7108 −3.45
S 3.47 3.55 2.91 1.096 2.23 0.947 1.49 2.4287 0.971

F23
B −10.5364

T = 80
−10.5318

T = 80
−10.5364 −10.5364 −10.5364 −10.5357 −6.97 −10.5358 −9.93

A −6.05 −7.37 −5.41 −10.428 −8.99 −10.354 −3.28 −8.3461 −4.42
S 3.74 3.81 3.46 0.379 2.81 0.970 1.69 2.4791 2.44

Table 5. Ranking-based Friedman test for the comparative algorithms.

F HOA-1 HOA-2 GA DE PSO GWO BOA HHO AOA

F1 1 4 2 3 7 5 9 6 8
F2 1 3 4 2 6 7 8 5 9
F3 8 5 1 9 6 3 7 2 4
F4 3 5 6 8 7 2 9 1 4
F5 2 3 9 4 6 7 5 1 8
F6 1 4 5 2 7 6 9 3 8
F7 2 4 3 5 7 6 8 1 9
F8 5 4 3 1.5 6 7 9 1.5 8
F9 1 6 3 7 8 4 9 2 5
F10 1 6 4 2 7 5 9 3 8
F11 1 3 4 2 6 7 9 5 8
F12 1 5 2 3 6 7 8 4 9
F13 1 4 2 3 6 7 8 5 9
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Table 5. Cont.

F HOA-1 HOA-2 GA DE PSO GWO BOA HHO AOA

F14 5 5 5 5 5 5 5 5 5
F15 3 1 7 6 5 4 8 2 9
F16 5 5 5 5 5 5 5 5 5
F17 5 5 5 5 5 5 5 5 5
F18 4.5 4.5 4.5 4.5 4.5 4.5 9 4.5 4.5
F19 4.5 4.5 4.5 4.5 4.5 4.5 9 4.5 4.5
F20 3.5 3.5 3.5 3.5 3.5 3.5 9 7 8
F21 2.5 7 2.5 2.5 2.5 5 8 6 9
F22 2.5 7 2.5 2.5 2.5 5.5 8 5.5 9
F23 2.5 7 2.5 2.5 2.5 6 9 5 8

Mean Rank 2.869565 4.586957 3.913043 4.021739 5.434783 5.26087 7.913043 3.869565 7.130435

4.2.2. The Mechanism Explanation by Examples

The core idea of HOF is based on a competition mechanism that tilts computing
resources to CBP to make it better, and compels all B-particles to compete for the rewards
assigned to the CBP. There is one point to be emphasized: in both HOA-1 and HOA-2, the
reward for CBP is granted before the corresponding H1 iteration starts. In other words,
once a B-particle takes the title of CBP after one H1 iteration, the reward is conferred on it
regardless of whether the alternation of CBP appears in the next iteration. This strategy
guarantees the execution of one H2 optimization in every H1 iteration, and is named
Normal-Mode, which implies that the number of H2 optimization implementation may
not be fixed to 1. There are another two possible situations. One case, called Conservation-
Mode, is when H2 optimization is implemented when the ith B-particle becomes CBP
and keeps the place until its next personal H1 iteration comes. If other B-particles assume
the place of CBP in this period, the ith B-particle will not gain extra assistance from S-
particles. The other case is defined as Redundance-Mode, in which H2 optimization is
executed as soon as the ith B particle becomes CBP. In this case, there may be more than one
H2 optimization in one H1 iteration. These three situations reveal the time delay between
the reward of CBP winning and awarding. From the perspective of computational stability,
we embed Normal-Mode in HOF to create HOA-1 and HOA-2. By the phenomenon above,
this competition mechanism strongly stimulates the competition in B-particles, especially
when the numbers of iterations and S-particles in H2 is increased, which exacerbates the
imbalance between the CBP and other B-particles.

To make a specific impression on readers, simulated examples were carried out to pro-
vide more concrete specification. For better demonstration of the competition mechanism,
we used HOA-1 to find the minimum of F8 function and set Ib to 150 and Is to 3 in order
to weaken the preponderance of CBP. To show the competition for the CBP place among
B-particles, we adjusted the parameter T to 10 to preferably exhibit the stepped attenuation
of search range.

The situation of CBP alternation is shown in Figure 8, in which Figure 8a gives the
alternation of CBP in each H1 iteration and Figure 8b presents the actual execution of
H2 optimization in the local region of the red square in Figure 8a. The differences between
three situations can be easily observed: in Normal-Mode the H2 optimization is carried out
in every H1 iteration, while the number of H2 optimization in Conservation-Mode and in
Redundance-Mode decreases five times and increases five times, respectively (the number
is 10 in the whole process). Note that in this example, at most, two B-particles become
the CBP in one H1 iteration. If the competition is fiercer and more B-particles sequentially
become the CBP in one H1 iteration, another example will reflect the result in Figure 9,
in which the numbers of H2 optimization carried out in three situations are respectively
16, 14 and 20. In Conservation-Mode, H2 optimization is implemented only when one
B-particle remains as CBP for at least two successive H1 iterations. For the performance
comparison of different algorithms, Normal-Mode is preferred, due to its fixed amount of
computation.
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Figure 8. Alternation of L1 and the comparison of three modes (a) sequence number of the best B-
particle in H1 iteration; (b) Local diagram of the sequence number of B-particle with H2 optimization
in three modes.

Figure 9. Complicated example for three modes comparison.

Another typical mechanism is the stepped attenuation of deltaSn, which is shown in
Figure 10. Because the upper bound and lower bound of each dimension of F8 function
is the same, the first element of deltaSn is qualified to embody its range variation. All
elements of deltaSn are reduced to one tenth every 10 H1 iterations. However, it was found
in the experiment that the algorithm may not converge to the global optima if the value
of T is too small, while a T that is too large causes a loss of solution accuracy in a finite
number of iterations. Therefore, further research is warranted to resolve this contradiction.

Figure 10. Stepped decrease of deltaSn.

4.2.3. The Value of Parameter T

In the benchmark functions test, a significant feature of both HOA-1 and HOA-2 is
that the parameter T is usually different and tuned according to the test function, which is
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due to the shrinking mechanism of search space. When the number of iterations in H1 is
fixed, decreasing the value of T means to accelerate the process of space shrinking. If this
rate is too fast, the minimum search by S-particles will be severely restricted and limited
in its ability to help CBP update its position. Only when the optimization in H2 works
properly can HOA-1 and HOA-2 seek out a good solution. Conversely, a slow shrinking
rate reduces the search efficiency, due to the search space being too large. Meanwhile, a
finite iterative number inevitably limits the amount of computation. Hence, in order to
promote the smooth progress of optimization, we used different constant values to set the
parameter T to control the search precision.

For better elucidation of the influence of different T on a given function, an additional
example was provided. Without loss of generality, the F1 function was used to present the
phenomenon of performance deterioration and the HOA-1 was assigned to execute the
optimization mission. In HOA-1, we added Is from 4 to 10 and set the value of T as 4, 5,
6 and 12. These four group results were collected and compared to show the difference.
Each group had 30 solutions, ranked in descending order of F1 function, and all results
are displayed in Figure 11, in which Fbest represents the minimum after each run, and
the common logarithm of Fbest is taken to conveniently reflect the difference. Three key
features can be concluded:

1. A smaller T has the potential to make the algorithm find a better solution.
2. A destabilization of the search may occur when the value of T varies.
3. A T that is too small may impede the algorithm search for the optimal solution.

Figure 11. The influence of different values of T on optimized results.

In this work, the value of T was set by trial and error to achieve a balance between
stability and search efficacy, which leaves room for further research to design an adaptive
law for parameter adjustment and to mitigate the trouble of manual parameter setting.

5. Applications of the Proposed Methods

In this section, two spacecraft trajectory optimization problems, the multi-impulse
minimum fuel orbit transfer and the pursuit-evasion game of two spacecraft, are employed
to reflect the capability of the proposed HOA-1 and HOA-2. The former problem is
extensively solved by meta-heuristic algorithms [33,44]. The latter problem considers the
requirement of tracking a non-cooperative target with maneuvering ability, and has been
the subject of much recent attention [45]. The functions of both problems demonstrate
strong nonlinearity and variable coupling, even without additional constraints.

5.1. Multi-Impulse Minimum Fuel Orbit Transfer
5.1.1. Problem Formulation and Parameter Setting

Spacecraft orbit optimal transfer by impulsive thrusters is a classical and significant
problem. However, an analytic solution of optimal impulsive control for orbit transfer
in complicated situations is difficult to obtain when the number of impulses increases
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and additional complicated constraints are considered. Therefore, a direct approach was
developed to construct a general nonlinear programming problem and solve it by advanced
optimization algorithms [46]. Relevant research results can be referred to in [44].

Considering the goal of proving the effectiveness of the proposed methods, we chose
minimum fuel transfer between two coplanar circular orbits as the problem to be optimized.
This has an analytical solution known as the famous Hohmann transfer with two-impulse
maneuver. Usually, the fuel consumed is positively correlated with the velocity increment,
so the orbit transfer by minimum velocity increment is equivalent to the minimum fuel
case. For additional details on the derivation, [47] is recommended. In accordance with the
size limit of this paper, a brief introduction of Hohmann transfer is generalized below.

For two coplanar circular orbits around the celestial body, an ellipse connecting two
orbits and tangent to them is shown in Figure 12. A spacecraft on the initial orbit can reach
the final orbit after two-impulse maneuver ∆v1 and ∆v2. The transfer trajectory is half an
ellipse from the perigee to the apogee of the transfer elliptic orbit. Two impulses ∆v1 and
∆v2 are given as follows:

∆v1 =

√
2µ

r2
r1(r1 + r2)

−
√

µ

r1
, ∆v2 =

√
µ

r2
−
√

2µ
r1

r2(r1 + r2)
(13)

where µ is the gravitational constant of the celestial body, r1 and r2 are radii of the initial
and final circular orbit. According to the characteristic of Hohmann transfer with the theo-
retical solution of two-impulse maneuver, we designed three cases to test the optimization
performance of the proposed two algorithms. As with problem 1 in [44], they concerned
two orbits around Mars (µ = 42, 830 km/s2), with r1 and r2 being 8000 km and 15,000 km,
respectively. The three cases are distinguished by search space as listed in Table 6.

Table 6. Search space of three cases.

Case Search Space

Case 1 2-dimension, Lb = [−0.1 −0.1]T and Ub = [0.8 0.8]T

Case 2 5-dimension, Lb = [0 0 5577 0 0]T and Ub = [0.25 0.25 33,465 0.25 0.25]T

Case 3 5-dimension, Lb = [0 0 5577 0 0]T and Ub = [0.25 0.25 16,733 0.25 0.25]T

Figure 12. Diagram of Hohmann transfer.

Without loss of generality, the start points of the three cases were all set to the (8000,0).
In Case 1, we gave the first in-plane impulse to make the spacecraft leave the initial orbit
and applied the second impulse to make it revolve on the final orbit when it reached one
point of the final orbit. When the first impulse was provided, the second impulse, if the
transfer trajectory intersected the final orbit, was able to be calculated. Therefore, the
search space was a 2-dimensional vector whose components were the radial and tangential
velocity increments. The landscape is depicted in Figure 13, in which ∆vx and ∆vy represent
coordinate components of ∆v1, and the domain of the initial velocity impulse that cannot
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realize orbit transfer is marked with a red dot. Subsequently, we shrank the range of initial
velocity increments so as to make the transfer impossible by two-impulse, by which a three-
impulse orbit transfer was constructed and the search space became a five-dimensional
vector, added to the second 2-dimension impulse and the applied time. Different values of
the upper bound of the applied time led to Case 2 and Case 3. In Case 2, the upper bound
of applied time allowed the spacecraft to fly one revolution and return to the start point,
by which the same total impulse increment with two-impulse Hohmann transfer could be
achieved by three-impulse maneuver. However, the upper bound of applied time violated
this condition in Case 3, making the result of three-impulse orbit transfer by minimum
velocity increment different from Case 2.

DE, GA, PSO, GWO, HHO, AOA, HOA-1 and HOA-2 were used to solve the three
cases according to the result of benchmark functions test. The numbers of iterations Imax
of all these contrastive algorithms were all set to 400, and the population size was 50.
Considering the inconsistency between the dimension of search space and the number
of search individuals of these algorithms, we set both Ib and Is to 30. The number of
S-particles in HOA-1 is equal to N, while that can be changed to 4N in HOA-2 to ensure
that the total number of function evaluations is the same as the comparison algorithms.
The parameters of DE, GA, PSO, GWO, HHO and AOA were the same as those in Table 1.
For more meticulous search, we set α to 0.1 and c to 0 in both HOA-1 and HOA-2.

Figure 13. The landscape of orbit transfer in Case 1.

5.1.2. Results and Discussion

For Case 1 and Case 2, adding in ∆v1 and ∆v2 according to Equations (13), the theoret-
ical minimum velocity increment is 0.6091531 km/s2. Each algorithm was run 30 times and
the best result have been selected and listed in Table 7, in which the best solutions found by
these algorithms are bold. The results show that HOA-2 found the best solutions for the
three cases, which evidently reflects the superiority of the proposed methods. Because the
number of S-particles of HOA-1 should be equal to the problem dimension N, and that of
HOA-2 can be properly set to 4N, the amount of computation of HOA-1 is noticeably less
than other algorithms, which explains the performance degradation of HOA-1.

Table 7. Results of three cases.

Algorithms Case 1 Case 2 Case 3

DE 0.609153269 0.609856799 0.616650300
GA 0.609154556 0.609274226 0.634113176
PSO 0.609155127 0.609163945 0.613222985

HHO 0.609158146 0.609227931 0.613319255
AOA 0.609333116 0.609173849 0.613235349
GWO 0.609156659 0.609232163 0.612584848

HOA-1 0.609156393 (T = 10) 0.609189193 (T = 15) 0.613940295 (T = 15)
HOA-2 0.609153802 (T = 10) 0.609153512 (T = 15) 0.612572700 (T = 15)
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The process of orbit transfer using the best solution of three cases is diagrammed
in Figure 14, which is consistent with the previous analysis and proves the correctness
of the results. Comparing the results of Case 1 and Case 2, it can be observed that the
difficulty of finding the optimal solution increases when the dimensions of the search space
increase. In a similar way, further reduction in velocity range can construct the orbit transfer
by more impulses and increase the difficulty of spacecraft orbit maneuver optimization.
Nevertheless, uncertain spacecraft trajectory is more likely with the increasing number of
impulses [48].

Figure 14. The orbit transfer of (a) Case 1; (b) Case 2; (c) Case 3.

5.2. Pursuit-Evasion Game of Two Spacecraft
5.2.1. Problem Formulation and Parameters Setting

Spacecraft pursuit-evasion is a typical game problem, in which the pursuing spacecraft
attempts to capture the target while the evading spacecraft strives for escape. Accordingly,
this pursuit-evasion problem is a zero-sum differential game. As a result of the great
difficulty of an analytical solution derivation, the numerical methods have been extensively
used in recent decades. The indirect method of solving this problem is to derive the
necessary optimal conditions, transform it into a two-point boundary value problem
(TPBVP) and find a saddle point by numerical methods. In this paper, the TPBVP solution
is used to test the performance of the proposed methods. The dynamic model and necessary
conditions derivation are adopted from [49], and a transcription is provided below.

The differential equations of the pursuit-evasion game are written as follows:

.
X = A(t)X + TPUP + TEUE (14)

where X = [xP, yP, zP,
.
xP,

.
yP,

.
zP, xE, yE, zE,

.
xE,

.
yE,

.
zE]

T is the state variable of positions and
velocities of two spacecraft in the LVLH coordinate system of a virtual spacecraft in circular
reference orbit, and the subscripts P and E represent the pursuing spacecraft and the evading
spacecraft, respectively. UP = [01×3, uPx, uPy, uPz, 01×6]

T and UE = [01×9, uEx, uEy, uEz]
T

represent the direction vector of control exerted on two spacecraft, and satisfy the restraint
conditions

√
u2

Ix + u2
Iy + u2

Iz ≤ 1, in which I means P or E. TP and TE are the value of
maximum thrust per unit mass of two spacecraft. Clohessy–Wiltshire equations [50] are
used to describe the relative motion of two spacecraft with respect to the reference rotating
coordinate system, and the matrix A(t) can be expressed by Equation (15).

A(t) =
[

AP(t) 0
0 AE(t)

]
, AP(t) = AE(t) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

 (15)
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where ω is the constant rotational angular velocity of reference coordinate system in the
gravitational field of the Earth. Set the terminal time as tf, so the payoff function is as
follows:

J =
1
2
[(xP − xE)

2 + (yP − yE)
2 + (zP − zE)

2]
∣∣∣t=t f (16)

Therefore, the spacecraft pursuit-evasion game can be described thus: the goal of
pursuing spacecraft is to change UP to minimize J, while the evading spacecraft aims at
maximum by J by UE.

The adjoint variable λ = [λP, λE]
T is introduced corresponding to X, in which

λI = [λIx, λIy, λIz, λI
.
x, λI

.
y, λI

.
z]

T and I = P, E. Construct the Hamiltonian function
as H = λTX, and the control of two spacecraft can be derived according to the minimum
principle and Cauchy–Schwarz inequality.

uPx = − λPx√
λ2

Px+λ2
Py+λ2

Pz

uPy = − λPy√
λ2

Px+λ2
Py+λ2

Pz

uPz = − λPz√
λ2

Px+λ2
Py+λ2

Pz

,



uEx = λEx√
λ2

Ex+λ2
Ey+λ2

Ez

uEy =
λEy√

λ2
Ex+λ2

Ey+λ2
Ez

uEz =
λEz√

λ2
Ex+λ2

Ey+λ2
Ez

(17)

The adjoint variable λ = [λP, λE]
T satisfies the differential equations in (18).

.
λ = −

(
∂H
∂X

)T
(18)

The transversal condition is derived by (19).

λ(t f ) = −
(

∂J
∂X(t f )

)T

= [λPx, λPy, λPz, 01×3, λEx, λEy, λEz, 01×3]
T
t=t f

(19)

So far, the TPBVP has been derived completely. Input the guess of initial adjoint
variables to the optimization algorithms and minimize J to test the performance of the
proposed methods. Relevant parameters are set as follows:

ω =
√

µ/r3
0, r0 = 6900 km, µ = 3.986 × 105 km3/s2

t f = 1500 s

TP = 0.02 g, TE = 0.01 g, g = 0.0098 km/s2

X(0) = [XP(0), XE(0)]
T

XP(0) = [0, 5.12, 6.21, 0.0268,−4.715× 10−5, 0.0011]
XE(0) = [9.92, 24.12, 0,−0.2678,−0.005608, 0]

(20)

A reasonable initial value of adjoint variable λ0 is given in (21), and the corresponding
J is 0.489126783247148.

λ0 = [λ1, λ2, . . . , λ11, λ12]T

λ1 = 1.828416833471× 10−3, λ2 = −1.087432620919× 10−3

λ3 = −1.0996952525× 10−5, λ4 = 1.31744718559753
λ5 = −0.092072105520415, λ6 = 9.50453008156× 10−3

λ7 = −2.96673065336× 10−4, λ8 = 1.01857391376× 10−4

λ9 = 1.4412237482× 10−5, λ10 = −0.408955063275592
λ11 = 5.43535547235× 10−3, λ12 = −8.00595379572× 10−4

(21)
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According to λ0, two cases were designed, as displayed in Table 8, to test the per-
formance of the same eight algorithms as in Section 5.1. Note that in Table 8, [1]12 is a
12-dimension column vector with all elements being 1. The parameters of these algorithms
are almost the same as in Section 5.1, except that we changed Ib to 40 for HOA-1 to improve
its performance, and the number of S-particles of HOA-1 and HOA-2 were respectively set
to 12 and 20, to ensure a smaller amount of computation compared with other algorithms.

Table 8. Search space of two cases.

Case Search Space

Case 1 Lb = −5× [1]12, Ub = 5× [1]12
Case 2 Lb = λ0 − 0.01× [1]12, Ub = λ0 + 0.01× [1]12

5.2.2. Results and Discussion

For both cases, each algorithm was run 10 times and the best result was selected
and listed in Table 9, in which the best solutions are bold. The results show that HOA-
2 performed best in this test, while the performance of HOA-1 is poorer than GWO and
HOA-2, but better than other algorithms. Considering the difference between the two cases,
it can be concluded that Case 1 examined the exploration of algorithms, while exploitation
was more important in Case 2. Thus, the result is consistent with the previous statement
that hierarchical optimization is designed to assign more computation resources to the CBP
position update.

Table 9. Results of two cases.

Algorithms Case 1 Case 2

DE 31.99873636 11.53267283
GA 38.30182027 7.804473121
PSO 9.975250323 13.99749289

GWO 9.945175394 1.523214099
HHO 27.19103058 2.48115544
AOA 26.93112607 10.05829695

HOA-1 11.56198501 (T = 4) 2.194148725 (T = 4)
HOA-2 7.148744461 (T = 4) 1.032140678 (T = 5)

It is universally accepted that the solution of TPBVP is difficult to acquire due to the
strongly sensitive characteristic of the initial guess value of the adjoint variable that lacks
physical meaning. However, a better initial guess may help us solve the TPBVP by the
multiple shooting method, whose limitation lies in the high requirement of initial value. To
illustrate the diversion caused by poorer initial adjoint variables, an example is provided
in which two initial values of adjoint variable are used as input to the multiple shooting
method to check whether the evading spacecraft could be captured by the designed control
(17). The first initial value is λ0, and the second one λ′0 is obtained by decreasing the first
element of λ0 by 20%. The payoff function J with λ′0 is 36.448. The result is diagrammed in
Figure 15, which shows that a tiny change in the initial value of TPBVP had a great impact
on the result. Therefore, the proposed methods can effectively help to guess the initial
value of TPBVP.
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Figure 15. The result based on two sets of initial values of adjoint variables (a) the result with λ0 as
input; (b) the result with λ′0 as input.

In these two spacecraft trajectory optimization problems, HOA-2 performed better
than HOA-1. This can be explained by two factors. The first is that the function evaluation
number of HOA-1 is significantly less than other algorithms. The second factor is that
the S-particle multidimensional sampling, based on the Gaussian distribution function in
HOA-2, performs more efficiently when Is increases. Therefore, the proper allocation of
the numbers of B-particles and S-particles can make better use of hierarchical optimization
algorithms. We suggest that HOA-1 is suitable when the problem dimension is relatively
large, and otherwise HOA-2 is preferred, especially when the S-particles can be set to a
much larger number than the problem dimension.

6. Conclusions

For improving the search ability of the best individual compared with others, a
hierarchical optimization frame is proposed, in which B-particles synergistically explore
the search space, and a local search performed by S-particles is conducted to update
the position of the best B-particle. Based on this framework, two algorithms (HOA-1
and HOA-2) were designed. The local search in HOA-1 is a type of pattern search with
random factors, and that of HOA-2 is based on the sampling in the iteratively updated
Gaussian distributions. Considering the limitations of regular benchmark functions, twenty-
three variant benchmark functions were designed and solved to accurately reflect the
performance of the proposed algorithms and compared algorithms. The experiment results
show that HOA-1 outperforms other algorithms in the benchmark function test. In order to
further verify the feasibility and superiority of the proposed algorithms, two spacecraft
trajectory optimization problems, multiple-impulse orbit transfer and spacecraft pursuit-
evasion game, were introduced, due to their complexity and challenges. The HOA-2
algorithm excels outstandingly in solving trajectory optimization problems. In HOA-1, the
number of S-particles should be identical to the dimension of the problem, which partially
limits its performance and adaptivity.

The parameter T greatly influences the performance of proposed algorithms, especially
on the convergence speed. Generally, a larger T is suitable to solve the unimodal function,
while a smaller T is preferred in solving the multimodal function. Also, the allocation of
function evaluation numbers between the B-particles and S-particles is important to deter-
mine the search efficiency. For future research, searching strategy design and techniques of
parameter setting are both promising research directions for promoting the development of
hierarchical optimization.
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Appendix A. Benchmark Functions

Table A1. Unimodal benchmark functions.

Function Dim Range f min

F1 = ∑Dim
i=1 x2

i 30 [−100, 100] 0

F2 = ∑Dim
i=1 |xi|+ ∏Dim

i=1 |xi| 30 [−10, 10] 0

F3 = ∑Dim
i=1

(
∑i

j=1 xj

)2 30 [−100, 100] 0

F4 = {|xi|, 1 ≤ i ≤ Dim} 30 [−100, 100] 0

F5 = ∑Dim
i=1

(
100(xi+1 − x2

i )
2
+ (xi + 1)2

)
30 [−30, 30] 0

F6 = ∑Dim
i=1 (|xi + 0.5|)2 30 [−100, 100] 0

F7 = ∑Dim
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Table A2. Multimodal benchmark functions.

Function Dim Range f min

F8 = ∑Dim
i=1 −xi sin(

√
|xi |) 30 [−500, 500] −419×Dim

F9 = ∑Dim
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

F10 = −20 exp
(
−0.2

√
∑Dim

i=1 x2
i /Dim

)
− exp

(
∑Dim

i=1 cos(2πxi)/Dim
)
+ 20 + e

30 [−32, 32] 0

F11 = ∑Dim
i=1 x2

i /4000−∏Dim
i=1 cos

(
xi/
√

i
)
+ 1 30 [−600, 600] 0

F12 = π
Dim

{
sin(πy1) + ∑Dim−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yDim − 1)2
}

+∑Dim
1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

F13 = 0.1

{
sin2(3πx1) + ∑Dim−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]

+(xDim − 1)2[1 + sin2(2πxDim)]

}
+∑Dim

1 u(xi , 5, 100, 4)

30 [−50, 50] 0

Table A3. Fixed-dimension benchmark functions.

Function Dim Range f min

F14 =

(
1

500 + ∑25
j=1

1
j+∑2

i=1 (xi−aij)
6

)−1
2 [−65, 65] 0.998

F15 = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003

F16 = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17 =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18 =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3
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Table A3. Cont.

Function Dim Range f min

F19 = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(
xj − pij

)2
)

3 [0, 1] −3.86

F20 = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(
xj − pij

)2
)

6 [0, 1] −3.32

F21 = ∑5
i=1

[
(X− ai)

T(X− ai) + ci

]−1 4 [0, 10] −10.1532

F22 = ∑7
i=1

[
(X− ai)

T(X− ai) + ci

]−1 4 [0, 10] −10.4028

F23 = ∑10
i=1

[
(X− ai)

T(X− ai) + ci

]−1 4 [0, 10] −10.5363
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