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Abstract

In this paper, we use a surprised system to construct some exact solutions of compressible Euler
equations with two and three dimension. Furthermore, we also give other exact solutions of three
dimension incompressible Euler equations.
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1 Introduction

In this paper, we are concerned with the exact solution to 2 and 3 dimension compressible Euler
equations 

∂tρ+ div(ρū) = 0

∂t(ρū) + div(ρū⊗ ū) +∇P̄ (ρ) = 0

ū|t=0 = ū0, ρ|t=0 = ρ0

(1.1)
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where (t, x) ∈ R+ × Rn, n = 2, 3, and ū ∈ Rn, ρ, P̄ stand for the velocity, density,pressure of
gases respectively. If (ρ, ū) ∈ C1 is a solution of the above systems with ρ ̸= 0, then it admits the
following equivalent form 

∂tρ+ div(ρū) = 0

∂tū+ ū · ∇ū+∇p̄(ρ) = 0

ū|t=0 = ū0, ρ|t=0 = ρ0

(1.2)

The Euler equations are a very important model in fluid mechanics, which have been wide used
in many areas. In the mathematical theory, there are much work, such as the local solution’s
existence. However, about the system, there are still difficult problems unsolved. For example, the
global existence is opened. In the history researching the Euler equations (1.1), scholars prefer to
demonstrate the polytropic gases, namely

P̄ = κργ , κ > 0, γ > 1.

Under the case, we can get great deal of results by search tools, but in some ways, the local
existence is still opened. Whatever the pressure is, the significance consequence is little. In
order to obtain valuable result, constructing their explicit solutions is a very significance part
in mathematical physics. Exact solutions can provide the concrete examples to understand their
nonlinear phenomena and physical applications. In addition, there some works about the exact
solutions of (1.2), such as [1, 2, 3, 4]. In [5], K.L. Cheun gave some blow-up solutions. In our paper,
we also give some blow-up exact solutions by choosing suitable parametric functions. And Blake in
[6] gave periodic structure’s solutions. The same solution in our work, is given. Moreover, people
also consider other solution with befitting conditions, for example [7, 8].

We don’t directly study (1.1) or (1.2), but demonstrate the surprising systems
∂tdivu+ u∇divu = ε(divu)2 + f(t)

∂tu+ u · ∇u+∇p = 0

u|t=0 = u0, divu|t=0 = divu0

(1.3)

where f(t) is a function depending only on time t, and ε = ±1. Using the above equations’s
solutions, we can construct the solutions belonging to (1.2), and at same time, we also give some
exact solutions of the 3 dimension incompressible Euler quations

∂tũ+ ũ · ∇ũ+∇p̃ = 0

divũ = 0

ũ|t=0 = ũ0

(1.4)

In fact, when ε = −1 and f(t) ≡ 0, if u, p is a solution of (1.3) with divu ∈ C1, then by the the
inverse function theorem, we have p(u) = p ◦ (div)−1(divu) = p̄(divu). That is,

ū = u, ρ = divu, p̄ = p ◦ (div)−1 (1.5)

is a solution of (1.2). While, ε = 1, (1.4) have a family solutions likely

ũ(t, x̃) = (u, xn+1divu), p̃(t, x̃) = p(t, x) +
1

2
x2n+1f(t) (1.6)

So,(1.3) is a magical system.

In this paper, we considerate (1.3) with 2 and 3 dimension under cylindrical coordinate. Since 2
dimension cylindrical coordinate is contained in the 3 dimension, so we state to study (1.3) with 3
dimension. We demonstrate the axisymmetric solution

u(t, r, z) = ur(t, r, z)e⃗r + uθ(t, r, z)e⃗θ + uz(t, r, z)e⃗z (1.7)
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with

e⃗r = (
x

r
,
y

r
, 0), e⃗θ = (−y

r
,
x

r
, 0), e⃗z = (0, 0, 1), r =

√
x21 + x22

Then,by calculating, we get the facts that

u · ∇ = ur∂r +
1

r
uθ∂θ + uz∂z,

and

divu =
1

r
ur + urr + uzz

Thus, we can reduce the axisymmetric equations
( 1
r
ur + urr + uzz)t + ur( 1

r
ur + urr + uzz)r + uz( 1

r
ur + urr + uzz)z = ε( 1

r
ur + urr + uzz)

2 + f(t)

urt + ururr − 1
r
(uθ)2 + uzurz + pr = 0

uθt + uruθr +
1
r
uruθ + uzuθz = 0

uzt + uruzr + uzuzz + pz = 0

(1.8)

In the following, we apply (1.8) to construct some exact solutions of Euler equations.

2 The Exact Solutions for n = 2

Under the case, (1.7) and (1.8) respectively becomes

u(t, r) = ur(t, r)e⃗r + uθ(t, r)e⃗θ (2.1)

with e⃗r = (x
r
, y
r
), e⃗θ = (− y

r
, x
r
), and

( 1
r
ur + urr)t + ur( 1

r
ur + urr)r = ε( 1

r
ur + urr)

2 + f(t)

urt + ururr − 1
r
(uθ)2 + pr = 0

uθt + uruθr +
1
r
uruθ = 0

(2.2)

Based on the above system, we know that once we have the expression of ur, we right now use the
characteristics’ method to give exact expression of uθ depending on the equation

uθt + uruθr +
1

r
uruθ = 0 (2.3)

and also have

p =

∫
1

r
(uθ)2dr −

∫
urtdr −

1

2
(ur)2 (2.4)

Thus, we employ the first equation in (2.2) to give some exactly type of ur.

Write

η =
1

r
ur + urr

Then, by ODE theorem we have

ur =
e(t)

r
+

1

r

∫
rηdr

Applying the expression and the first equation in (2.2), we get

ηt + (
e(t)

r
+

1

r

∫
rηdr)ηr = εη2 + f(t)
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Let

η(t, r) = w(t, z), z = r2,

then, we obtain

wt + (2e(t) +

∫
wdz)wz = εw2 + f(t).

Against, writing

ξ = 2e(t) +

∫
wdz,

then, in the end, we think about the problem

ξzt + ξξzz = εξ2z + f(t) (2.5)

We learn the case ε = 1. We build up the type solution

ξ(t, z) = θ(t) + zπ(t) + p(t)ezk(t) + q(t)e−zk(t)

After computing, we get

ξ(t, z) = θ(t) + zπ(t) + α exp

(∫
3π(t)− θ(t)k(t)dt+ zk(t)

)
+ β exp

(∫
3π(t) + θ(t)k(t)dt− zk(t)

)
and

f(t) = 4αβs2 exp

(
4

∫
π(t)dt

)
+ g(t, π), α, β, s ∈ R,

with k(t) = s exp(−
∫
π(t)dt), where π(t) satisfies the ODE:

π′ = π2 + g(t, π), g(t, 0) = 0.

If π ≡ 0, then f(t) = 4αβs2. Thanks to the arbitrary of α, β, s, we require that f(t) is arbitrary
real number. Thus, we have

ur(t, r) =
e(t)

r
+
rπ(t)

2
+
α

2r
exp

(∫
3π(t)− θ(t)k(t)dt+ r2k(t)

)
+

β

2r
exp

(∫
3π(t) + θ(t)k(t)dt− r2k(t)

)
At the same time, we also have periodic solution ξ(t, z) due to θ(t), namely that

ξ(t, z) = θ(t) + kcos(αz − α

∫
θ(t)dt+ β) + ksin(αz − α

∫
θ(t)dt+ β)

where f(t) = −2α2k2, α, β, k ∈ R. At once, we get other type

ur(t, r) =
e(t)

r
+

√
2k

2r
sin

(
αr2 − α

∫
θ(t)dt+ β +

π

4

)
what is more, if ξ(t, x) is a solution, then the function

λaξ(λa+bt, λbx)

is also a solution with λ, a, b ∈ R− {0} and λ2a+2bf(t).
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When ε = −1 and f(t) ≡ 0, (2.5) reduces{
ξt + ξξz = h(t)

ξ(0, z) = g(z)
(2.6)

We use characteristics of the method to build solution. Hence, we have

ξ(t, z) = ξ̃(t, z0) = g(z0) +

∫ t

0

h(t′)dt′

where z0 meets

z = z0 + tg(z0) +

∫ t

0

∫ t′

0

h(t′′)dt′′dt′

Choosing suitable g(z0),so that G(z0) = z0 + tg(z0) ∈ C1, then we have

ξ(t, z) = g

(
G−1(z −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)
+

∫ t

0

h(t′)dt′

then by the above conversions, we get

ur(t, r) =
e(t)

r
+

1

2r
g

(
G−1(r2 −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)
.

No matter what ε is, we both have exact solution ur. Next, we use the solutions to solve uθ and
p. It is obvious that uθ = a

r
with a ∈ R is a solution of (2.4) no matter how ur is complex. In

addition, we study the relatively difficult solution for uθ. Let ur(t, r) = ϕ(t)
r

+ ψ(t)
2
r, then using

characteristics’ method, we get

uθ(t, r) = ũθ(t, r0) = σ(r0) exp

(
−
∫ t

0

ϕ(t′)

r2(t′)
+
ψ(t′)

2
dt′
)

(2.7)

with

1

2
r2(t) =

1

2
r20 exp

(∫ t

0

ψ(t′)dt′
)
+ exp

(∫ t

ψ(t′)dt′
)∫ t

0

ϕ(t′) exp

(
−
∫
ψ(t′)dt′

)
dt′

and ψ(t) satisfies the ODE

ψ′ = εψ2 + f(t)

Warning. It is careful to get the expression of uθ(t, r). We must first deal with integration, than
replace the r0 by r0(t, r).

Therefore, applying the above results, we have the following consequence.

Theorem 2.1. Let α, β, γ, δ be constants, r =
√
x2 + y2, k(t) = γ exp(−

∫
π(t)dt), and the function

π(t) satisfies the ODE

π′ = π2 + g(t, π), g(t, 0) = 0.

Then, three dimension incompressible Euler equations (1.4) has a class of exact solutions

ũ(t, x, y, z) =

(
x√

x2 + y2
ur − δy

x2 + y2
,

y√
x2 + y2

ur +
δx

x2 + y2
,−(

1

r
ur + urr)z

)
(2.8)
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p = − δ2

2r2
−
∫
urtdr −

1

2
(ur)2 +

1

2
z2f(t)

where

ur(t, r) =
e(t)

r
+
rπ(t)

2
+
α

2r
exp

(∫
3π(t)− θ(t)k(t)dt+ r2k(t)

)
+

β

2r
exp

(∫
3π(t) + θ(t)k(t)dt− r2k(t)

)
f(t) = 4αβγ2 exp

(
4

∫
π(t)dt

)
+ g(t, π)

or

ur(t, r) =
e(t)

r
+

√
2γ

2r
sin

(
αr2 − α

∫
θ(t)dt+ β +

π

4

)
, f(t) = −2α2γ2

for any functions e(t) and θ(t). In addition, it also has other kinds of exact solutions

ũ(t, x, y, z) =

(
xϕ(t)

x2 + y2
+
xψ(t)

2
− y√

x2 + y2
uθ,

yϕ(t)

x2 + y2
+
yψ(t)

2
+

x√
x2 + y2

uθ,−zψ(t)

)
(2.9)

p̄ =

∫
1

r
(uθ)2dr − ϕ′(t) ln r − 1

4
ψ′(t)r2 − 1

2
(
ϕ(t)

r
+
ψ(t)

2
r)2 +

1

2
z2(ψ′ − ψ2) (2.10)

here uθ satisfies (2.7), for any functions ϕ(t) and ψ(t).

Remark 2.2. About the exact solution of (1.4), there are many works,likely [9, 10, 11, 12]. In this
paper, we have a great improvement than [10]. In [10], the constructed solutions are

ur =
1

2αr

(
1− e−αr

2

t0 − t

)
, uθ = 0, uz = −e

−αr2

t0 − t

with α ≥ 0, or

ur =
1

2(1 + βt)

(
−βr + δ(1− e−α(1+βt)r

2

)

αr(1 + βt)[1− (δ − β)t]

)
, uθ = 0, uz =

1

1 + βt

(
β − δe−α(1+βt)r

2

1− (δ − β)t

)
with β ≥ 0. In our first solutions, we can get the above solutions by choosing suitable parametric
functions and constants. Choosing suitable parametric functions, we can get different solutions.
But the energy is not finite.

Under the case two dimension compressible Euler equations, we let f(t) = 0 and ε = −1, then

ψ(t) =
1

t+ β

Hence, using the above analyse, we also have the following result.

Theorem 2.3. Two dimension compressible Euler equations (1.2) has a sires of exact solutions

ū(t, x, y) =

(
x√

x2 + y2
ur − αy

x2 + y2
,

y√
x2 + y2

ur +
αx

x2 + y2

)
,

p(t, x, y) = − α2

2r2
−
∫
urtdr −

1

2
(ur)2 (2.11)
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with

ur(t, r) =
e(t)

r
+

1

2r
g

(
G−1(r2 −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)
.

What is more, we also have other terms of solutions

ū(t, x, y) =

(
xϕ(t)

x2 + y2
+

x

2(t+ β)
− y√

x2 + y2
uθ,

yϕ(t)

x2 + y2
+

y

2(t+ β)
+

x√
x2 + y2

uθ
)
, (2.12)

p̄ =

∫
1

r
(uθ)2dr − ϕ′(t) ln r +

r2

4(t+ β)2
− 1

2
(
ϕ(t)

r
+

r

2(t+ β)
)2 (2.13)

with that uθ meets (2.7) and ψ(t) = 1
t+β

.

3 The Exact Solutions for n = 3

In this section, we mainly consider the compressible Euler equations with n = 3. And, we give two
class of especial solutions using the system (1.4).

3.1 The first class solutions

Let

ur = ur1(r, t), u
θ = uθ1(r, t), u

z = uz1(r, t), p = p1(r, t) (3.1)

then we obtain the one-parameter model
( 1
r
ur1 + ur1r)t + ur1(

1
r
ur1 + ur1r)r + ( 1

r
ur1 + ur1r)

2 = 0

ur1t + ur1u
r
1r − 1

r
(uθ1)

2 + p1r = 0

uθ1t + ur1u
θ
1r +

1
r
ur1u

θ
1 = 0

uz1t + ur1u
z
1r = 0

(3.2)

Write

η =
1

r
ur1 + ur1r

Then, by ODE theorem we have

ur1 =
e(t)

r
+

1

r

∫
rηdr

Applying the expression and (3.2), we get

ηt + (
e(t)

r
+

1

r

∫
rηdr)ηr + η2 = 0

Let

η(t, r) = w(t, z), z = r2

we obtain

wt + (2e(t) +

∫
wdz)wz + w2 = 0
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Writing

ξ = 2e(t) +

∫
wdz,

then, in the end, we think about the problem

ξzt + ξξzz + ξ2z = 0

By this equation, we get {
ξt + ξξz = h(t)

ξ(0, z) = g(z)
(3.3)

We use characteristics of the method to build solution. Hence, we have

ξ(t, z) = ξ̃(t, z0) = g(z0) +

∫ t

0

h(t′)dt′

where z0 meets

z = z0 + tg(z0) +

∫ t

0

∫ t′

0

h(t′′)dt′′dt′

Choosing suitable g(z0) so that G(z0) = z0 + tg(z0) ∈ C1, then we have

ξ(t, z) = g

(
G−1(z −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)
+

∫ t

0

h(t′)dt′

then by the above conversions, we get

ur1(t, r) =
e(t)

r
+

1

2r
g

(
G−1(r2 −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)
Choosing suitable h(t), g(z0), we gain the solution ur1. It is obvious that for any constant β, uz1 = β
is a solution of the last equation in (3.2) and uθ1 = α

r
is also a solution of the third equation in (3.2),

whatever ur1 is. Moreover, we can check the claim that

ur1 =
c(t)

r
+

r

2(t+ β)

satisfies the first equation in (3.2). Due to the characteristics’the method, we obtain the solution
uθ1 and uz1. For u

z
1, we have

uz1 = υ

√ β

t+ β
r2 − 2β

∫ t

0

c(t′)

t′ + β
dt′


As for uθ1, using the third equation and against the characteristics of the method, we get the result
that the solution of the system {

uθ1t + ur1u
θ
1r +

1
r
ur1u

θ
1 = 0

uθ1(0, r) = ψ(r)

has the solutions

uθ1(t, r) = ũθ1(t, r0) = ψ(r0) exp

(
−
∫ t

0

c(t′)

r2(t′)
+

1

2(t′ + β)
dt′
)

(3.4)
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with

1

2
r2(t) =

t+ β

2β
r20 + (t+ β)

∫ t

0

c(t′)

t′ + β
dt′

According to these works, we get the following results.

Theorem 3.1. Let α, β be constants meeting α ̸= 0, β ̸= 0. Then the three dimension compressible
Euler equations (1.2) has a class of exact solutions

ū(t, x, y, z) =

(
x√

x2 + y2
ur1 −

αy

x2 + y2
,

y√
x2 + y2

ur +
αx

x2 + y2
, β

)
, (3.5)

p̄(t, x, y, z) =

∫
−ur1tdr −

α2

2r2
− 1

2
(ur1)

2, ρ(t, x, y, z) =
1

r
ur1 + ur1r

with

ur1(t, r) =
e(t)

r
+

1

2r
g

(
G−1(r2 −

∫ t

0

∫ t′

0

h(t′′)dt′′dt′)

)

Here, the function G(s) = tg(s) + s is any invertible function. Moreover, it also has other exact
solutions

ū(t, x, y, z) =

(
xc(t)

x2 + y2
+

x

2(t+ β)
− y√

x2 + y2
uθ1,

yc(t)

x2 + y2
+

y

2(t+ β)
+

x√
x2 + y2

uθ1, u
z
1

)
(3.6)

p̄(t, x, y, z) = −c′(t) ln r + r2

4(t+ β)2
− 1

2
(
c(t)

r
+

r

2(t+ β)
)2 +

∫
1

r
(uθ1)

2dr, ρ(t, x, y, z) =
1

t+ β
(3.7)

where,

uz1 = υ

√ β

t+ β
r2 − 2β

∫ t

0

c(t′)

t′ + β
dt′


and uθ1 satisfies (3.4).

3.2 The second kind solutions

We consider the type solution

ur = ur2(t, r), u
θ = uθ2(t, r), u

z = uz2(t, z), p = q1(t, r) + q2(t, z)

Then, we have the equations


( 1
r
ur
2 + ur

2r)t + uz
2zt + ur

2(
1
r
ur
2 + ur

2r)r + uz
2u

z
2zz + ( 1

r
ur
2 + ur

2r)
2 + 2( 1

r
ur
2 + ur

2r)u
z
2z + (uz

2z)
2 = 0

ur
2t + ur

2u
r
2r − 1

r
(uθ

2)
2 + q1r = 0

uθ
2t + ur

2u
θ
2r + 1

r
ur
2u

θ
2 = 0

uz
2t + uz

2u
z
2z + q2z = 0

(3.8)

Let

1

r
ur2 + ur2r = ϕ(t)
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then, we have

ur2 =
c(t)

r
+

1

2
rϕ(t) (3.9)

and the reduced system 

ϕ′ + ϕ2 = 0

uz2zt + uz2u
z
2zz + 2uz2zϕ(t) + (uz2z)

2 = 0

ur2t + ur2u
r
2r − 1

r
(uθ2)

2 + q1r = 0

uθ2t + ur2u
θ
2r +

1
r
ur2u

θ
2 = 0

uz2t + uz2u
z
2z + q2z = 0

(3.10)

By the first equation in (3.10), we get

ϕ(t) =
1

t+ β
, ur2 =

c(t)

r
+

r

2(t+ β)
(3.11)

Using the second equation, we know that

∂z (u
z
2t + uz2u

z
2z + 2uz2ϕ(t)) = uz2zt + uz2u

z
2zz + 2uz2zϕ(t) + (uz2z)

2 = 0

Combining with last equation, we have

uz2t + uz2u
z
2z = −2uz2ϕ(t) + h(t)

with

q2z = 2uz2ϕ(t)− h(t)

Employing the characteristics of the method, we know

uz2(t, z) = ũz2(t, z0) =
β2π(z0)

(t+ β)2
+

1

(t+ β)2

∫ t

0

(t′ + β)2h(t′)dt′

Here z0 satisfies

z = z0 −
β2π(z0)

2(t+ β)
+

∫ t

0

1

(t′ + β)2

∫ t′

0

(t′′ + β)2h(t′′)dt′′dt′

Choosing suitable function π(z0) is so that the function

Π(z0) := z0 −
β2π(z0)

2(t+ β)

belongs to C1. Thus, we have

uz2 =
β2

(t+ β)2
π(Π−1

(
z −

∫ t

0

1

(t′ + β)2

∫ t′

0

(t′′ + β)2h(t′′)dt′′dt′
)
) +

1

(t+ β)2

∫ t

0

(t′ + β)2h(t′)dt′

At the same time, we also get

q2 =
2

t+ β

∫
uz2dz − zh(t)

Transacting uθ2 is same as dealing with uθ1. Thus, we have that

uθ2(t, r) = ũθ2(t, r0) = ϕ(r0) exp

(
−
∫ t

0

c(t′)

r2(t′)
+

1

2(t′ + β)
dt′
)

(3.12)

35



Li et al.; JAMCS, 35(7): 26-37, 2020; Article no.JAMCS.60738

with

1

2
r2(t) =

t+ β

2β
r20 + (t+ β)

∫ t

0

c(t′)

t′ + β
dt′

Now, due to the expression of ur2 and uθ2 and the third equation, the pressure q1 is solved by

q1 =

∫
1

r
(uθ2)

2dr −
∫
ur2tdr −

1

2
(ur2)

2

Therefore, we have the following consequence.

Theorem 3.2. Let β ∈ R and r =
√
x2 + y2. And assume that the functions π(s) satisfies the

restrictions

Π(s) = s− β2π(s)

2(t+ β)
∈ C1

Then, the three dimension compressible Euler equations (1.2) has a class of exact solutions

ū(t, x, y, z) =

(
xc(t)

x2 + y2
+

x

2(t+ β)
− y√

x2 + y2
uθ,

yc(t)

x2 + y2
+

y

2(t+ β)
+

x√
x2 + y2

uθ, uz2

)
(3.13)

p(t, x, y, z) =

∫
1

r
(uθ2)

2dr − c′(t) ln r +
r2

4(t+ β)2
− 1

2
(
c(t)

r
+

r

2(t+ β)
)2 +

2

t+ β

∫
uz2dz − zh(t),

ρ(t, x, y, z) =
1

t+ β
+ uz2z

Here,

uz2 =
β2

(t+ β)2
π(Π−1

(
z −

∫ t

0

1

(t′ + β)2

∫ t′

0

(t′′ + β)2h(t′′)dt′′dt′
)
) +

1

(t+ β)2

∫ t

0

(t′ + β)2h(t′)dt′

and uθ2 meets (3.12).

Remark 3.2.2. The two or three dimension compressible Euler equations’s exact solutions in this
paper, depend on the first order equation:{

ut + uux = f

u(0, x) = ω(x)
(3.14)

If ω(x) is Riemann’s data, then the above equation has shock wave. Therefore, the two or three
dimension compressible Euler equations has shock wave.

4 Conclusions

In this work, we utilize the system (1.3) to build up some exact solutions of the 2-dimensional
and 3-dimensional compressible Euler equations. At the same time, we give some exact solutions
for 3-dimensional incompressible Euler equations. However, the constructed exact solutions of
incompressible system are infinite energetic, and simultaneously the blow-up solutions are also
obtained via choosing certain proper variable functions.

36



Li et al.; JAMCS, 35(7): 26-37, 2020; Article no.JAMCS.60738

Acknowledgement

At the end of this paper, we are very grateful to our teacher, the third author. He was of great help
to us in the course or our research. At the same time, I would like to thank the second author for
her careful examination and calculation.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Zheng Y, Zhang T. Exact spiral solutions of the two-dimensional Euler equations. Discrete
Continuous Dynamical Systems. 1996;3(1):117-133.

[2] Aristov SN, Polyanin AD. New classes of exact solutions of Euler equations. Doklady Physics.
2008;53(3):166-171.

[3] Geng C. Strong wave interactions, exact solutions and singularity formations for the
compressible Euler equations. Dissertations Theses Gradworks; 2010.

[4] Chefranov SG, Chefranov AS. The exact solution to the 3D vortex compressible euler equation
and the clay millennium problem generalization. Turbulent Cascades II; 2019.

[5] Cheun KL. Perturbational blow-up solutions to the compressible Euler equations with
damping. Springerplus; 2016.

[6] Blake, Temple, et al. Linear waves that express the simplest possible periodic structure of the
compressible Euler equations. Acta Mathematica Scientia; 2009.

[7] Hantke M, Dreyer W, Warnecke G. Exact solutions to the Riemann problem for compressible
isothermal Euler equations for two-phase flows with and without phase transition. Quarterly
of Applied Mathematics. 2013;71.

[8] Chefranov SG, Chefranov AS. Exact solution of the compressible Euler-Helmholtz equation
and the Millennium Prize Problem generalization. Physica Scripta; 2018.

[9] Clarke J. A class of exact solutions for the Euler equations with sources: Part I. Mathematical
Computer Modelling. 2002;36(3):275-291.

[10] Gibbon JD, Moore DR, Stuart JT. Exact, infinite energy, blow-up solutions of the three-
dimensional Euler equations. Institute of Physica Puslishing, Nonlinearity. 2003;16:1823-1831.

[11] Song W, Li H, Yang G, et al. Nonhomogeneous boundary value problem for (I, J) similar
solutions of incompressible two-dimensional Euler equations. Journal of Inequalities and
Applications. 2014;277:1-15.

[12] Liu M, Li X, Zhao Q. Exact solutions to Euler equation and Navier-Stokes equation. Zeitschrift
für Angewandte Mathematik und Physik; 2019;43:1-13.

——————————————————————————————————————————————–
c⃝2020 Li et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits un-restricted use, distribu-
tion and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/60738

37

http://creativecommons.org/licenses/by/4.0

	Introduction
	The Exact Solutions for n=2
	The Exact Solutions for n=3
	The first class solutions
	The second kind solutions

	Conclusions

