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1. Introduction

C onvexity plays an important role in many features of mathematical programming including, for
example, sufficient optimality conditions and duality theorems. The topic of convex functions has

been treated extensively in the classical book by Hardy, Littlewood and Polya [1]. The study of fractional
order derivatives and integrals is called fractional calculus. Fractional calculus have important applications in
all fields of applied sciences. Fractional integration and fractional differentiation appear as basic part in the
subject of partial differential equations [2,3]. Many types of fractional integral as well as differential operators
have been defined in literature. Classical Caputo-fractional derivatives were introduced by Michele Caputo in
[4] in 1967. Toader [5] defined the m-convexity as follows:

Definition 1. The function Ψ : [u, v]→ R, is said to be convex, if we have

Ψ (τz1 + (1− τ)z2) ≤ τΨ(z1) + (1− τ)Ψ(z2)

for all z1, z2 ∈ [u, v] and τ ∈ [0, 1].

Definition 2. (see[6]) The function Ψ : I ⊆ < is exponential-convex, if

Ψ (τz1 + (1− τ)z2) ≤ τe−αz1 Ψ(z1) + (1− τ)e−αz2 Ψ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ I and α ∈ <.

Definition 3. (see[7]) The function Ψ : I ⊂ [0, ∞) −→ < is s-convex in second sense with s ∈ [0, 1], if

Ψ (τz1 + (1− τ)z2) ≤ τsΨ(z1) + (1− τ)sΨ(z2)

for all τ ∈ [0, 1) and z1, z2 ∈ I and α ∈ <.

Definition 4. (see[8]) The function Ψ : I ⊂ [0, ∞) −→ < is exponential s-convex in second sense with s ∈ [0, 1],
if

Ψ (τz1 + (1− τ)z2) ≤ τse−βz1 Ψ(z1) + (1− τ)se−βz2 Ψ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ I and β ∈ <.
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Definition 5. (see[9]) The function Ψ : K → < is (s, m)-convex in second sense with s ∈ [0, 1], and K ⊆ [0, ∞]

be an interval, if
Ψ (τz1 + (1− τ)z2) ≤ τsΨ(z1) + (1− τ)smΨ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ [0, ∞].

Definition 6. The function Ψ : K → < is exponential (s, m)-convex in second sense with s ∈ [0, 1], and
K ⊆ [0, ∞] be an interval, if

Ψ (τz1 + (1− τ)z2) ≤ τse−βz1 Ψ(z1) + (1− τ)se−βz2 mΨ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ [0, ∞] and β ∈ <.

The previous era of fractional calculus is as old as the history of differential calculus. They generalize the
differential operators and ordinary integral. However, the fractional derivatives have some basic properties
than the corresponding classical ones. On the other hand, besides the smooth requirement, Caputo derivative
does not coincide with the classical derivative [10]. We give the following definition of Caputo fractional
derivatives, see [2,11–13].

Definition 7. let Ψ ∈ ACn[u, v] be a space of functions having nth derivatives absolutely continuous with
λ > 0 and λ /∈ {1, 2, 3, ...}, n = [λ] + 1. The right sided Caputo fractional derivative is as follows:

(CDλ
u+Ψ)(z) =

1
Γ(n− λ)

∫ z

u

Ψ(n)(τ)

(z− τ)λ−n+1 dτ, z > u. (1)

The left sided caputo fractional derivative is as follows:

(CDλ
v−Ψ)(z) =

(−1)n

Γ(n− λ)

∫ v

z

Ψ(n)(τ)

(τ − z)λ−n+1 dτ, z < v. (2)

The Caputo fractional derivative (CDn
u+Ψ)(z) coincides with Ψ(n)(z) whereas (CDn

v−Ψ)(z) coincides with
Ψ(n)(z) with exactness to a constant multiplier (−1)n, if Λ = n ∈ {1, 2, 3, ...} and usual derivative Ψ(n)(z) of
order n exists.

In particular. we have

(CD0
u+Ψ)(z) = (CD0

v−Ψ)(z) = Ψ(z) (3)

where n = 1 and λ = 0.

In this paper, we establish several new integral inequalities including Caputo fractional derivatives
for exponential (s, m)-convex functions. By using convexity for exponential (s, m)-convex functions of any
positive integer order differentiable function some novel results are given. The purpose of this paper is to
introduce some fractional inequalities for the Caputo-fractional derivatives via (s, m)-convex functions which
have derivatives of any integer order.

2. Main Results

First we give the following estimate of the sum of left and right handed Caputo fractional derivatives.

Theorem 1. Let f : I −→ R be a real valued n-time differentiable function where n is a positive integer. If f (n) is a
positive (s, m)-convex function, then for u, v ∈ I; u < v and λ1, λ2 ≥ 1, the following inequality for Caputo fractional
derivatives holds:

Γ(n− λ1 + 1)(CDλ1−1
u+ f )(u) + Γ(n− λ2 + 1)(CDλ2−1

v− f )(u) (4)

≤ (z− u)n−λ1+1e−βu f (n)(u) + (v− z)n−λ2+1e−βv f (n)(v)
s + 1

+ (m)e−βz f (n)(z)
[
(z− u)n−λ1+1 + (v− z)n−λ2+1

s + 1

]
.
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Proof. Let us consider the function f on the interval [u, z], z ∈ [u, v] and n is a positive integer. For τ ∈ [u, z]
and n > α, the following inequality holds:

(z− τ)n−λ1 ≤ (z− u)n−λ1 . (5)

Since f (n) is exponential (s, m)-convex therefore for τ ∈ [u, z], we have

f (n)(τ) ≤
(

z− τ

z− u

)s
e−βu f (n)(u) + m

(
τ − u
z− u

)s
e−βz f (n)(z). (6)

Multiplying inequalities (6) and (5), then integrating with respect to τ over [u, z], we have

∫ z

u
(z− τ)n−λ1 f (n)(τ)dτ ≤ (z− u)n−λ1

(z− u)s

[
e−βu f (n)(u)

∫ z

u
(z− τ)sdτ + me−βz f (n)(z)

∫ z

u
(τ − u)sdτ

]
.

Γ(n− λ1 + 1)(CDλ1−1
u+ f )(z) ≤ (z− u)n−λ1+1

s + 1
[e−βu f (n)(u) + me−βz f (n)(z)]. (7)

Now we consider function f on the interval [z, v], z ∈ [u, v]. For τ ∈ [z, v], the following inequality holds:

(τ − z)n−λ2 ≤ (v− z)n−λ2 . (8)

Since f (n) is exponential (s, m)-convex on [u, v], therefore for τ ∈ [z, v], we have

f (n)(τ) ≤
(

τ − z
v− z

)s
e−βv f (n)(v) + m

(
v− τ

v− z

)s
e−βz f (n)(z). (9)

Multiplying inequalities (8) and (9), then integrating with respect to τ over [z, v], we have

∫ v

z
(τ − z)n−λ2 f (n)(τ)dτ ≤ (v− z)n−λ2

(v− z)s

[
e−βv f (n)(v)

∫ v

z
(τ − z)sdτ + me−βz f (n)(z)

∫ v

z
(v− τ)sdτ

]

Γ(n− λ2 + 1)(CDλ2−1
v− f )(z) ≤ (v− z)n−λ2+1

s + 1
[e−βv f (n)(v) + me−βz f (n)(z)]. (10)

Adding (7) and (10) we get the required inequality in (4).

Corollary 1. By setting λ1 = λ2 in (4) we get the following fractional integral inequality:

Γ(n− λ1 + 1)
(
(CDλ1−1

u+ f )(z) + (CDλ1−1
v− f )(z)

)
≤ (z− u)n−λ1+1e−βu f (n)(u) + (v− z)n−λ1+1e−βv f (n)(v)

s + 1
+ me−βz f (n)(z)

[
(z− u)n−λ1+1 + (v− z)n−λ1+1

s + 1

]
.

(11)

Remark 1. By setting s = 1 the inequality will be of the form:

Γ(n− λ1 + 1)
(
(CDλ1−1

u+ f )(z) + (CDλ1−1
v− f )(z)

)
≤ (z− u)n−λ1+1e−βu f (n)(u) + (v− z)n−λ1+1e−βv f (n)(v)

2
+ me−βz f (n)(z)

[
(z− u)n−λ1+1 + (v− z)n−λ1+1

2

]
.

(12)

Remark 2. By setting λ1 = λ2, β = 0, s = 1 and m = 1, we will get Corollary 2.1 of [14].

Now, we give the next result stated in the following theorem.
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Theorem 2. Let f : I −→ R be a real valued n-time differentiable function where n is a positive integer. If | f (n+1)|
is exponential (s,m)-convex function, then for u, v ∈ I; u < v and λ1, λ2 > 0, the following inequality for Caputo
fractional derivatives holds∣∣∣Γ(n− λ1 + 1)(CDλ1

u+ f )(z) + Γ(n− λ2 + 1)(CDλ2
v− f )(z) −

(
(z− u)n−λ1 f (n)(u) + (v− z)n−λ2 f (n)(v)

)∣∣∣
≤ (z− u)λ1+1e−βu| f (n+1)(u)|+ (v− z)λ2+1e−βv| f (n+1)(v)|

s + 1
+ m

e−βz| f (n+1)(z)|
(
(z− u)λ1+1 + (v− z)λ2+1)

s + 1
.

(13)

Proof. Since | f (n+1)| is exponential (s, m)-convex function and n is a positive integer, therefore for τ ∈ [u, z]
and n > α, we have

| f (n+1)(τ)| ≤
(

z− τ

z− u

)s
e−βu| f (n+1)(u)|+ m

(
τ − u
z− u

)s
e−βz| f (n+1)(z)|

from which we can write

−
((

z− τ

z− u

)s
e−βu| f (n+1)(u)|+ m

(
τ − u
z− u

)s
e−βz| f (n+1)(z)|

)
≤ f (n+1)(τ)

≤
(

z− τ

z− u

)s
e−βu| f (n+1)(u)|+ m

(
τ − u
z− u

)s
e−βz| f (n+1)(z)|. (14)

We consider the second inequality of inequality (14)

f (n+1)(τ) ≤
(

z− τ

z− u

)s
e−βu| f (n+1)(u)|+ m

(
τ − u
z− u

)s
e−βz| f (n+1)(z)|. (15)

Now for λ1 > 0, we have
(z− τ)n−λ1 ≤ (z− u)n−λ1 , τ ∈ [u, z]. (16)

The product of last two inequalities give

(z− τ)n−λ1 f (n+1)(τ) ≤ (z− u)n−λ1−s
(
(z− τ)se−βu| f (n+1)(u)|+ m(τ − u)se−βz| f (n+1)(z)|

)
.

Integrating with respect to τ over [u, z], we have∫ z

u
(z− τ)n−λ1 f (n+1)(τ)dτ

≤ (z− u)n−λ1−s
[

e−βu| f (n+1)(u)|
∫ z

u
(z− tτ)sdτ + me−βz| f (n+1)(z)|

∫ z

u
(τ − u)sdτ

]
= (z− u)n−λ1+1

[
e−βu| f (n+1)(u)|+ me−βz| f (n+1)(z)|

s + 1

]
, (17)

and ∫ z

u
(z− τ)n−λ1 f (n+1)(τ)dτ = f (n)(τ)(z− τ)n−λ1 |zu + (n− λ1)

∫ z

u
(z− τ)n−λ1−1 f (n)(τ)dτ

= − f (n)(u)(z− u)n−λ1 + Γ(n− λ1 + 1)(CDλ1
u+ f )(z).

Therefore (17) takes the form:

Γ(n− λ1 + 1)(CDλ1
u+ f )(z)− f (n)(u)(z− u)n−λ1 ≤ (z− u)n−λ1+1

[
e−βu| f (n+1)(u)|+ me−βz| f (n+1)(z)|

s + 1

]
. (18)

If one consider from (14) the first inequality and proceed as we did for the second inequality, then
following inequality can be obtained:
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f (n)(u)(z− u)n−λ1 − Γ(n− λ1 + 1)(CDλ1
u+ f )(z) ≤ (z− u)n−λ1+1

[
e−βu| f (n+1)(u)|+ me−βz| f (n+1)(z)|

s + 1

]
. (19)

From (18) and (19), we get

∣∣∣Γ(n− λ1 + 1)(CDλ1
u+ f )(z)− f (n)(u)(z− u)n−λ1

∣∣∣ ≤ (z− u)n−λ1+1

[
e−βu| f (n+1)(u)|+ me−βz| f (n+1)(z)|

s + 1

]
.

(20)

On the other hand, for τ ∈ [z, v], using convexity of | f (n+1)| as a exponential (s, m)-convex function, we
have

| f (n+1)(τ)| ≤
(

τ − z
v− z

)s
e−βv| f (n+1)(v)|+ m

(
v− τ

v− z

)s
e−βz| f (n+1)(z)|. (21)

Also for τ ∈ [z, v] and β > 0, we have

(τ − z)n−λ2 ≤ (v− z)n−λ2 . (22)

By adopting the same treatment as we have done for (14) and (16) one can obtain from (21) and (22) the
following inequality:

∣∣∣Γ(n− λ2 + 1)(CDλ2
v− f )(z)− f (n)(v)(v− z)n−λ2

∣∣∣ ≤ (v− z)n−λ2+1

[
e−βv| f (n+1)(v)|+ me−βz| f (n+1)(z)|

s + 1

]
.

(23)

By combining the inequalities (20) and (23) via triangular inequality we get the required inequality.

It is interesting to see the following inequalities as a special case.

Corollary 2. By setting λ1 = λ2 in (13), we get the following fractional integral inequality:∣∣∣Γ(n− λ1 + 1)[(CDλ1
u+ f )(z) + (CDλ1

v− f )(z)]−
(
(z− u)n−λ1 f (n)(u) + (v− z)n−λ1 f (n)(v)

)∣∣∣
≤ (z− u)n−λ1+1e−βu| f (n+1)(u)|+ (v− z)n−λ1+1e−βv| f (n+1)(v)|

s + 1

+ m
e−βz| f (n+1)(z)|

[
(z− u)n−λ1+1 + (v− z)n−λ1+1]

s + 1
.

Remark 3. By setting s = 1 the inequality will be of the form,∣∣∣Γ(n− λ1 + 1)[(CDλ1
u+ f )(z) + (CDλ1

v− f )(z)]−
(
(z− u)n−λ1 f (n)(u) + (v− z)n−λ1 f (n)(v)

)∣∣∣
≤ (z− u)n−λ1+1e−βu| f (n+1)(u)|+ (v− z)n−λ1+1e−βv| f (n+1)(v)|

2

+ m
e−βz| f (n+1)(z)|

[
(z− u)n−λ1+1 + (v− z)n−λ1+1]

2
.

Remark 4. By setting λ1 = λ2, β = 0, s = 1 and m = 1, we will get Corollary 2.2 of [14].

Before going to the next theorem we observe the following result.

Lemma 1. Let f : [u, v] −→ R, be a exponential (s,m)-convex function. If f is exponentially symmetric about u+v
2 ,

then the following inequality holds

f
(

u + v
2

)
≤ 1

2s

(
e−βz f (z)

)
(1 + m) z ∈ [u, v]. (24)
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Proof. Since f is exponential (s,m)-convex we have

f
(

u + v
2

)
≤ 1

2s

[
e−β(uτ+(1−τ)v) f (uτ + (1− τ)v) + me−β(u(1−τ)+vτ) f (u(1− τ) + vτ)

]
. (25)

Since f is symmetric about a+b
2 , therefore we get f (u + v− z) = f (vτ + (1− τ)u).

f
(

u + v
2

)
≤ 1

2s

[
e−β(uτ+(1−τ)v) f (uτ + (1− τ)v) + me−β(u+v−z) f (u + v− z)

]
. (26)

By substituting z = (uτ + (1− τ)v) where z ∈ [u, v], we get

f
(

u + v
2

)
≤ 1

2s

(
e−βz f (z) + me−β(u+v−z) f (u + v− z)

)
.

Also f is exponentially symmetric about u+v
2 , therefore we have f (u + v − z) = f (z) and inequality in

(24) holds.

Theorem 3. Let f : I −→ R be a real valued n-time differentiable function where n is a positive integer. If f (n) is a
positive exponential (s,m)- convex and symmetric about u+v

2 , then for u, v ∈ I; u < v and λ1, λ2 ≥ 1, the following
inequality for Caputo fractional derivatives holds

h(β)2s

2(1 + m)

(
1

n− λ1 + 1
+

1
n− λ2 + 1

)
f (n)

(
u + v

2

)
≤

Γ(n− λ2 + 1)(CDλ2−1
v− f )(u)

2(v− u)n−λ2+1 +
Γ(n− λ1 + 1)(CDλ1−1

u+ f )(v)
2(v− u)n−λ1+1

≤ m f (n)(u) + f (n)(v)
(s + 1)

. (27)

where h(β) = eβv for β < 0 and h(β) = eβu for β ≥ 0.

Proof. For z ∈ [u, v], we have
(z− a)n−λ2 ≤ (v− u)n−λ2 . (28)

Also f is exponential (s, m)-convex function, we have

f (n)(z) ≤
(

z− u
v− u

)s
e−βv f (n)(v) +

(
b− x
v− u

)s
e−βum f (n)(u). (29)

Multiplying (28) and (29) and then integrating with respect to z over [u, v], we have

∫ v

u
(z− u)n−λ2 f (n)(z)dz ≤ (v− u)n−λ2

(v− u)s

(∫ v

u
e−βv( f (n)(v)(z− u)s + e−βum f (n)(u)(v− z)s)dz

)
.

From which we have

Γ(n− λ2 + 1)(CDλ2−1
v− f )(u)

(v− u)n−λ2+1 ≤ e−βv f (n)(v) + e−βum f (n)(u)
s + 1

. (30)

On the other hand for z ∈ [u, v] we have

(v− z)n−λ1 ≤ (v− u)n−λ1 . (31)

Multiplying (29) and (31) and then integrating with respect to z over [u, v], we get

∫ v

u
(v− z)n−λ1 f (n)(z)dz ≤ (v− u)n−λ1+1 e−βum f (n)(u) + e−βv f (n)(v)

s + 1
.
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From which we have

Γ(n− λ1 + 1)(CDλ1−1
u+ f )(v)

(v− u)n−λ1+1 ≤ e−βum f (n)(u) + e−βv f (n)(v)
s + 1

. (32)

Adding (30) and (32) we get the second inequality.

Γ(n− λ2 + 1)(CDλ2−1
v− f )(u)

2(v− u)n−λ2+1 +
Γ(n− λ1 + 1)(CDλ1−1

u+ f )(v)
2(v− u)n−λ1+1 ≤ e−βum f (n)(u) + e−βv f (n)(v)

s + 1
.

Since f (n) is exponential s-convex and symmetric about u+v
2 using Lemma 1, we have

f (n)
(

u + v
2

)
≤ 1

2s

(
e−βz f n(z)(1 + m)

)
, z ∈ [u, v]. (33)

Multiplying with (z− u)n−λ2 on both sides and then integrating over [u, v], we have

f (n)
(

u + v
2

) ∫ v

u
(z− u)n−λ2 dz ≤ (1 + m)

h(β)2s

∫ v

u
(z− u)n−λ2 f (n)(z)dz. (34)

By definition of Caputo fractional derivatives for exponential (s, m)-convex function, one can have

f (n)
(

u + v
2

)
1

2(n− λ2 + 1)
≤ (1 + m)

h(β)2s
Γ(n− λ2 + 1)(CDλ2−1

v− f )(u)
2(v− u)n−λ2+1 . (35)

Multiplying (33) with (v− z)n−λ1 , then integrating over [u, v], one can get

f (n)
(

u + v
2

)
1

2(n− λ1 + 1)
≤ (1 + m)

h(β)2s
Γ(n− λ1 + 1)(CDλ1−1

u+ f )(v)
2(v− u)n−λ1+1 . (36)

Adding (35) and (36), we get the first inequality.

Corollary 3. If we put λ1 = λ2 in (27), then we get

h(β)2s

(1+m)
f (n)

( u+v
2
) 1
(n−λ1+1) ≤

Γ(n−λ1+1)
(2)(v−u)λ1+1

[
(CDλ1+1

v− f )(u) + (CDλ1+1
u+ f )(v)

]
≤ e−βu f (n)(u)+e−βv f (n)(v)

s+1

where h(β) = eβv for β < 0 and h(β) = eβu for β ≥ 0.

Remark 5. By setting γ = 0, s = 1 and s = 1 in Theorem 3 we will get Theorem 2.3 of [14].
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