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Abstract 

 
Timetabling is the task of assigning sets of events to periods of time, taking into account resource-

constraints and preferences among assignments. This involves combinatorial optimization, time-based 

planning, in order to realize a highly constrained problems that addresses a multi-dimensional 

complexities. This paper investigated the use of activity matrix to reduce the complexity of timetabling 

and applying genetic algorithm to resolving Colleges of Education Timetabling Problem. In this study, 

Course, Rooms and Time slots are represented in the form of a multidimensional array. On this is applied 

certain genetic operators such as crossover operator in a manner that does not violate the hard constraints 

and then a local is performed to obtain an optimal solution. The fittest solution (optimum timetable) is 

then displayed as the final timetable. Based on the evaluation carried out on the completed system it was 

revealed that the completed system worked effectively well. 

 

 

Keywords: Genetic algorithm; time table; subject; data. 
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1 Introduction 

 
Resource allocation can be defined as the distribution of finite resources among competing entities with a 

goal to achieving optimal system functionality (Mohd, & Masri [1]). The efficient allocation of resources is 

an issue that impacts on all institutions, from small to large multinational companies. Some of the areas in 

which resource allocation problems exists in different forms include: health (Nurse and Doctors 

timetabling), transportation (flight and train timetabling), sports (timetabling of matches between pairs of 

teams), entertainment (scheduling network television programmes), industries (production scheduling), and 

education (course and exam timetabling) (Eugene [2]). The names Time-tabling problems or scheduling 

problems are sometimes used in referring to subclasses of resource allocation problems. However, the work 

described in this paper is concerned with solving Timetabling Scheduling Problem using Genetic Algorithm. 

Genetic algorithm is one of the powerful and widely used evolutionary computation methodologies for 

solving an optimization and search problem. Genetic algorithm does not create a problem specific result; 

rather it imitates the development of new and better populations among different species during evolution. 

Genetic algorithm proposes a general formulation for every problem by searching the solution space with a 

defined relevance calculation. It uses randomness and statistics to generate different solutions for different 

executions of the algorithm so that more than one trial can be made in order to get the best result. Unlike 

most standard heuristic algorithms, they use information of a population of individuals (solutions) when they 

conduct their search for better solutions and not only information from a single individual.  

 

A study by Landa [3] reveals that most educational institutions always resort to manual generation of their 

timetables which even at the optimal stage is still not free from clashes. These few clashes are generally left 

for the lecturers taking the clashing courses to work out the logistics of the courses so as to avoid the clash. 

Nashwan and Talal [4] stated that most corrections and repairs are done in a manual timetable system after 

receiving feedback from staff and students. This is a typical situation in the School of Science Federal 

College of Education (Tech), Gombe, where timetable design and construction is done manually and priority 

is given to the non-conflict of different study groups in terms of courses, time slots and venues.  

 

Naturally, the desire to avoid changes to school timetable is high in any academic institution, but changes 

seems to have become an unfortunate necessity in most schools due to the changes in the number of student 

groups and enrolment. This process of making changes or creating new timetable to satisfy a present reality 

in an institution is very tedious and laborious and often times could take a good number of days or even 

weeks to complete. This generally affects the startup of academic activities at the beginning of every 

semester. Despite the considerable time spent in the design and construction of manual timetable, it is still 

not free from errors due to clashes and course omission. Therefore, there is a need to provide an automated 

timetabling system that will resolve these challenging issues associated with manual timetabling.  

 

2 Related Literature 

 
2.1 Timetabling problems 

 
A timetabling problem can be defined as the problem of assigning a number of events into a limited number 

of time periods. Schaerf [5] describes timetabling problems as the allocation of resources for factors under 

predefined constraints so that it maximizes the possibility of allocation or minimizes the violation of 

constraint. In the view of Luis and Oliveira [6], Timetabling problem (TTP) can be defined as the fixing in 

time and space, a sequence of meetings between teachers and students, in a prefixed period of time, 

satisfying a set of constraints of several different kinds. The constraints refer to here may include both hard 

constraints that must be respected at all cost and soft constraints which are used to evaluate the quality of a 

timetable.  

 

During the last forty years, many papers related to automated timetabling have been published in conference 

proceeding and journals; some of these studies include that of Fang [7] who in his doctorate degree thesis, 
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investigated the use of genetic algorithm to solve a group of timetabling problems. He presented a 

framework for the utilization of genetic algorithms in solving timetabling problems in the context of learning 

institutions. The framework identified the following important points, which give considerable flexibility: a 

declaration of the specific constraints of the problem and use of a function for evaluation of the solutions, 

advising on the use of genetic algorithm since it is independent of the problem for its resolution. Grobner 

and Wilke [8] proposed a general purpose language which can be used to describe the basic structure of 

timetabling problems and its constraints. Luis and Oliveira [6] proposed another language known as 

Unilang. Unilang is intended to be a standard input language to any timetabling system. It enables a clear 

and natural representation of data, constraints, quality measures and solutions for different timetabling 

problems such as school timetabling, university timetabling and examination timetabling. 

 

Several other works on timetabling using genetic algorithm have also been carried out as presented in 

(Manar and Fatima [9]). The reviewed literatures include the work of Yang and Jat [10] who presented a 

Guided Search Genetic Algorithm (GSGA) to solve the University Course Timetabling Problem (UCTP). 

The problem addressed is a university course timetable, where an event (course and lecture) is assigned to a 

timeslot. Also, a number of rooms with specific features are assigned to these events, and there are also a 

number of students that attend these events. The assignment of events to timeslots, rooms, and students is 

performed in such a way as to satisfy a number of hard and soft constraints. The proposed technique is a 

guided search strategy and Local Search (LS), which are integrated into a Steady State Genetic Algorithm 

(SSGA).  

 

Sapru et al. [11] addressed the problem of educational timetabling by assigning each lecture for a particular 

student group to a specific room during a given timeslot. This is done while taking into consideration 

restrictions on time and the availability of faculty and other resources. The encoding scheme for the 

proposed GA is based on representing each individual in the population as a timetable for a 5-day per week, 

with 8 timeslots per day. Each timeslot holds information about subjects, faculty and rooms that are assigned 

to each slot. All this information is encoded in binary. 

 

AlSharafat and M. S AlSharafat [12] developed a timetabling system to allocate first and second semester 

exams for a number of courses at Al-Bayt University. Three different forms of GAs were tried and compared 

in the work. The first is a Steady State Genetic Algorithm (SSGA) with overlapping populations; the second 

is an Enhanced Steady Genetic Algorithm (ESSGA), in which the crossover and mutation operators were 

enhanced using Fuzzy Logic (FL), and finally a Simple Genetic Algorithm (SGA) with non-overlapping 

populations. The results obtained from these researches showed a near optima solution, but the academic set 

up under which it was carried out is quite different from what is obtainable under this research. In the 

F.C.E.T Gombe, where most courses are double major, the different departments are completely 

interdependent on each another. This condition makes timetable construction in the F.C.E.T. Gombe more 

complicated when compared to course timetabling in the universities where different departments are 

relatively independent from each other. 

 

Raghavjee and Pillay [13] proposed a Genetic algorithm to solve the school timetable problem for a South 

African primary and high school schedules. The overall process is a two phase approach. The first phase is a 

GA that focuses on producing feasible timetables, while the second GA phase improves the quality of 

timetables found during the first phase. 

 

Abdullah et al. [14] investigated a genetic algorithm combined with a sequential local search for the 

curriculum based course timetabling problem. In this problem a timeslot and a room is assigned to all 

lectures of each course, while observing a set of hard and soft constraints.  

 

Most of the work on educational timetabling tends to focus mainly on university timetabling problem which 

scenario is quite different from what is obtainable in the College of Education in Nigeria. Course groups in 

the Colleges of Education are highly dependent on one another. This situation leads to high level of 

complexities in the timetable system. The study presented in this paper uses activity matrix to identify the 
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complexities in the system in order to facilitate conflict checking before applying the principle of genetic 

algorithm to construct a solution to the problem.  
 

2.2 Basic concept and the working principles of genetic algorithms 

 
A genetic algorithm is a search algorithm based on natural selection and the mechanisms of population 

genetics (Holland [15]). A genetic algorithm (GAs) is different from other traditional approaches to solving 

optimization problems. This simple idea of GA search got its inspiration from the Darwin’s theory of 

evolution commonly known as the survival of the fittest which is the biological processes of survival and 

adaptation (Goldberg [16]).   
 

The process of searching among a collection of candidate solutions for a desired solution is generally 

referred to as searching in a "search space", which refers to the set of all possible solutions or some 

collection of candidate solutions to a problem. In solving problems, some solutions will be the best among 

others. The space of all feasible solutions among which the desired solution resides is called search space 

(Chakraborty [17]). In addition each point in the search space represents one possible solution. Each possible 

solution can be marked by its value (or fitness) for the problem. The GA therefore looks for the best solution 

among a number of possible solutions represented by one point in the search space. 
 

Looking for a solution is equivalent to looking for some set of extreme values (Minimum or Maximum) 

within a pool of values called the search space. The process of finding an optimum solution in GA begins by 

using some set of values (candidate chromosomes) called the initial population. These individual solutions 

are then paired based on their fitness values to generate other possible set of values to form a new set of 

chromosomes for the next evolution. This is inspired by the principle that the new population that is 

generated has a high possibility to be better than the old population. Solutions are chosen according to their 

fitness value to form new solutions. This process is repeated until certain conditions are satisfied. Each 

iteration of this process is called a generation. An average of 50 to 500 runs or more are required for a 

standard (Gen and Cheng [18]). The entire set of generations is called a run. At the end of a run there are 

often one or more highly fit chromosomes in the population. 
  

2.3 Methods of selection in genetic algorithm 
 
There are many different techniques which a genetic algorithm can use to select the individuals to be copied 

over into the next generation. Some of the most common methods are mutually exclusive, but others can be 

and often are used in combination. In Alade et al. [19], the following are the methods of GA selection. 
 

2.3.1 Elitist selection  
 

Chromosomes with the best fitness values are copied into the next generation before the application of any 

genetic operator. This helps the GA to retain some of the best chromosomes at each generation, hence 

improving the performance of the GA.  
 

2.3.2 Fitness-proportionate selection  
 

Chromosome with the greatest fitness value has the highest probability of being selected than members with 

lesser fitness values.   
 

2.3.3 Roulette-wheel selection 
 

Roulette-wheel selection is a form of selection whereby the chance of any member being selected is 

proportionate to its fitness value being greater than or less than other competing members of the pool. This is 

generally represented in the form of a game of roulette where every member of the pool is assigned a space 

on the Roulette-wheel according to their fitness value. Members with greater fitness value stand a better 

chance of being selected each time the wheel is rotated.  
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2.3.4 Scaling selection  
 

In scaling method certain objective functional values are assigned to each candidate chromosomes to scale 

their fitness values. These scaled values are then used to determine the probability of survival for each 

candidate chromosomes in the population. The purpose is to maintain a uniform selection pressure 

throughout the GA run as the method prevents a rapid domination by only highly fitted chromosomes.  
 

2.3.5 Tournament selection  
 

Some chromosomes are chosen at random out of the larger population and their fitness values are compared 

with each other. The fittest individual is then chosen as parent to reproduce in the next generation. The 

selection method can be improved by adjusting the size of the tournament.  
 

2.3.6 Rank selection  
 

Each member of the population is first ranked by assigning certain numerical values based on the members’ 

fitness value. Thereafter, selection for the next generation is based on this ranking rather than depending 

purely on their fitness value. This method gives every member of the population a chance to be selected, 

hence preventing the dominance of only highly fitted chromosomes which help to preserve diversity.  
 

2.3.7 Generational selection  
 

An entire new population of chromosomes is formed from the offspring of the chromosomes that were 

selected for breading in each generation. In this method an entire population pool is replaced with a new 

population for each generation. 
 

2.3.8 Steady-state selection  
 

In each generation, some highly fitted chromosomes are selected and are copied back into the existing pool 

of values to replace some low fitted chromosomes to form a new set of chromosomes for the next 

generation. In this method, only a few individuals are replaced at any given time leaving the rest population 

to survive to the next generation.   
 

2.3.9 Hierarchical selection  
 

Candidate chromosomes are subjected to many rounds of selection processes at each generation. Generally, 

evaluation at the lower level of the tree are faster and less cumbersome when compared to the rigorous 

evaluation processes that  surviving candidate chromosomes are subjected to at the higher level stage of the 

tree. This method enhances an efficient usage of computational time as many less promising candidate 

chromosomes had been weeded off at the early stage of evaluation. 
 

3 Overview of the Existing System 

 
FCE (T), Gombe is a fast growing institution; with six different schools offering divers’ courses in different 

vocations. The School of Science Education is the largest of all the schools with a total number of six 

different departments and nine different course combinations. Currently a total of 125 courses are being 

offered in all the departments excluding practical courses. The timetable starts from 8:00 am and ends at 

6:00 pm, which repeats in the same way for five working days of the week (Monday to Friday) making a 

total of 50 time slots. The traditional method of timetable construction in the School of Science involves the 

assignment of different courses to different cells in a table. The Timetable Officer carefully does this using 

pencil and paper to avoid clashes in terms of courses and venues. This process is sometimes facilitated by 

the use of Microsoft Excel to reduce paper works. Despite the considerable man hours spent using this 

traditional method of timetable construction, the timetable is still not free from clashes as some lecturers and 

course groups are often double booked. These clashes associated with the timetabling system are often left 

for the lecturers and student groups to sort out. 
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3.1 Analysis of the existing system 

  
The current timetable used by the NCE program is prepared manually. This traditional method of timetable 

preparation ensures that there are no clashes for the very timetable produced – which is not always the case. 

Timetables are subject to changes, considering the large number of departments in the school of sciences, 

and the inter-dependency nature of the departmental courses on each other, extra care needs to be taken to 

avoid clashes. This method of timetable preparation as it is being done in the school of sciences is associated 

with a lot of problems. 

 

3.2 Limitations of the existing system 

 
i. It is time consuming as the process takes too much time of the timetable officer.  

ii. Repeated time allocations may be made for a particular course thereby leading to data redundancy 

iii. It generates a lot of paper work. 

iv. Despite the time spent, it is still not free from clashes 

v. A minor change to course allocation renders the timetable infeasible. 

vi. Manual timetabling is not flexible, as a little adjustment can lead to multiple clashes.  

vii. Individual lecturers cannot easily have their personal time tables. 

 

4 Methodology 

 
4.1 Data collection 

 
To achieve the goal of conflict free and a good quality time table, different component parts of the school 

was investigated as follows:  

 

i. From the department point of view: - what are the different courses taken by each department and 

the lecturers that take them. This involves getting data about the different courses taken by the 

department and the different student groups that take such courses. 

ii. From the student group’s point of view: - what are the different courses and combinations that are 

offered by each student groups. This implies getting data about courses taken by each students 

group and the departments that offer the courses. 

iii. Finally the number of rooms available for lectures and their sizes. This involves getting data about 

the different rooms allocated to each department, their sizes in order to determine the courses that 

can be assigned to each room depending on the number of students groups that offer the course.   

 

To start the construction of a school timetable, every necessary information or data that is required for its 

feasibility must be made available. In general, to solve a course timetabling problem the following set of 

data are required:  the number of rooms available and their sizes, Courses and their credit unit, lecturers and 

the courses they teach, student groups and their course combination, which serve as an input data to the 

system. All these data can be obtained from the academic institution concerned.  

 

4.2 Proposed system modeling 

 
The idea behind genetic algorithms is, given a pool of parents (genes), select any two parents and initiate a 

crossover between the parents to generate two children which in turn can undergo mutation. These two 

children are then evaluated through an objective function to determine their fitness. This cycle continues 

until a minimum or maximum objective function is reached. Individual chromosomes with high fitness value 

have a higher probability of survival in the process of evolution. This implies that chromosomes with high 

fitness values will be more in number in the next pool of parents that will be used for subsequent generation 

while chromosomes with lower fitness values will gradually reduce in number until they become extinct 

from the population as the evolution continues. The implication of this is that an optimum solution (a highly 
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fitted chromosome) will be found as the population evolved.  The fitness value of an individual chromosome 

is a determination of how far or close a chromosome is to a solution (Alade et al. [19]). The number of 

constraints that an individual chromosome satisfies determines the fitness value (goodness) of that 

chromosome. This is represented by a value which is the sum total of all violations with various scaling 

factor for each constraints, with hard constraints having higher values to ensure they influence selection 

more than soft constraint violations. In this research the formula:   
vx

fitness








11

1
 was used as 

a fitness function. Where x is the sum of all violated hard constraints and v is the sum of all violated soft 

constraint and ∂ is kept as zero until there are no hard constraints to consider again. This implies that soft 

constraints are not considered at the expense of violating even a single hard constraint. Fig. 1 shows the 

standard genetic algorithm process for course timetabling.  

 

 
 

Fig. 1. Standard genetic algorithm flowchart 
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4.2.1 Activity matrix 

 

The introduction of activity matrix is to serve as a guide in the process of space allocation to teaching events 

during timetable creation. This frame work is aimed at resolving a number of conflicting demands prior to 

time table creation. These conflicts often arise due to the peculiar nature of course combinations in most 

Colleges of Education in Nigeria, where most courses of studies are double major. This peculiarity made 

most of the departments in a school to be interdependent of one another.  For the timetable officer as well as 

the quality of the timetable as it affects every staff, it is necessary to be able to pin point potential difficulties 

before timetable implementation. These potential conflicts can easily be resolved by the means of activity 

matrix. 

 

Table 1. Activity matrix for course groups 

 

Courses MTH CSC PHY CHE ISC BIO EDU 

MTH 1 x x x x 1 x 

CSC x 1 x 1 1 1 x 

PHY x x 1 x x x x 

CHE x 1 x 1 x x x 

ISC x 1 x x 1 x x 

BIO x 1 x x x 1 x 

EDU x x x x x x 1 

 

The activity matrix in Table 1 shows all possible courses that can go together in the school of science of any 

college of education that offers the different course combinations as shown in the under listed courses. All 1s 

indicate courses that can be taken concurrently without clash due to student group course combination. On 

the other hand all X indicates courses that can never be scheduled together because it will result in a clash. 

Putting this condition as a constraint during program implementation will make a timetable more flexible 

and free from clashes. 

 

1.  Mathematics Computer 

2.  Physics Computer 

3.  Biology Integrated Science 

4.  Physics Integrated Science 

5.  Physics Mathematics 

6.  Chemistry Mathematics 

7.  Chemistry Integrated Science 

8.  Biology Chemistry 

9.  Mathematics Integrated Science 

 

4.2.2 Chromosome representation 

 

Before a GA can be used to solve any particular problem, a method must be devised to encode potential 

solution to that problem in a form that a computer can process. Since chromosome represent a candidate 

solution to the timetabling problem, it implies that chromosome representation should not be naïve but 

should be represented in a manner that the application of any genetic operator such as crossover and 

mutation operator will not render the timetable infeasible.  

 

In this case study there are five (5) working days in the school, that is from Monday to Friday and ten (10) 

lecture hours in each day of the week (from 08:00 - 18:00). This scenario will give a total of 5×10 = 50 

timeslots in a week as can be seen in Table 2. 

 

In order to create a timetable for each room in a week, a multidimensional array called room timetable that 

adds up all the 50 timeslots available for each room end to end was designed as shown in Fig. 2. The first 50 

elements of the multidimensional array (from 0 to 50) represents the 50 timeslots available for room #1 in a 
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week, the next 50 elements from 51 to 100 represents the 50 time slots available for room #2 in a week, this 

pattern continues until the last available room. Hence, the size of this array will be 50 x numbers of rooms 

available. Also another one dimensional array was designed to contain the list of all the courses that is taken 

in a semester. This array will be called Course List. The elements of this array also contain other information 

such the lecturer taken the course and number of hours allocated to the course (credit unit). 

 

Table 2. Available time slots 

 

                 Days 

 

Hours   

Monday Tuesday Wednesday Thursday Friday 

8:00 – 9:00 1 11 21 31 41 

9:00 – 10:00 2 12 22 32 42 

10:00 – 11:00 3 13 23 33 43 

11:00 – 12:00 4 14 24 34 44 

12:00 – 13:00 5 15 25 35 45 

13:00 – 14:00 6 16 26 36 46 

14:00 – 15:00 7 17 27 37 47 

15:00 – 16:00 8 18 28 38 48 

16:00 – 17:00 9 19 29 39 49 

17:00 – 18:00 10 20 30 40 50 

 

Every element in the multidimensional array corresponds to each gene in a chromosome which also 

correspond to certain elements of the of the Course List array. For example each gene in a chromosome 

(each array element), say chrm [i], holds the index value of the room timetable element where the i
th

 course 

was scheduled to. Taking an instance from Fig. 2, the 2nd element of the chromosome chrm [ii] is 50, which 

correspond to Course #2 in the course list array, and was scheduled to the 50
th

 element in the rooms’ 

timetable which is room #1. As can be seen from Table 2 also, the 50
th

 element corresponds to Friday 

starting at 17:00. The implication of this is that, Course #2 is taken on Friday at 17:00 in Room #1. Since 

each chromosome elements represents the starting time for each course, it can be deduced from the course 

list array the particular lecturer that takes a course and the numbers of hours allocated to the course. The Fig. 

2 below depicts the chromosome representation of the School of Science timetable. 

 

 
 

Fig. 2. Chromosome representation 
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4.2.3 Use case representation of the system 

 

Fig. 3 below depicts a use case description of the program, showing the interaction within the system.  

 

Timetabling System

User

Timetable System

Specify Input

«uses»

Input Courses

Input Course
Lecturers

«uses»

Input Departments

«uses»

Input Programs

«uses»

Input Halls

«uses»

Specify Constraints

Random Generation &
Course Allocation

Apply & Verify
Constraints

Crossover Course
Allocation

Mutate Course
Allocations

«uses»

«extends»

«uses»

«extends»

Write To External
File

«uses»

«uses»

 

Fig. 3. Use case diagram of the system 

 

4.3 System design 

 
4.3.1 Design of interfaces 

 

The purpose of the interface design is to provide the user with a comfortable and convenient means of 

interacting with the timetable system. The flexibility and convenience of the interface is a major factor to 

determining the friendliness of the system. An outline of the system interface is described below: 
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4.3.2 Output interface design 

 

The output design shows the format of the value(s) that is expected to be generated by the system. The 

output of system determines its usability and reliability. The School of Science Timetable (SST) system is 

design to output the following as can be seen in Fig. 4: 

 

 List of all courses  

 Display the master timetable 

 Display the individual lecturer timetable 

 Display venue timetable 

 

 
 

Fig. 4. Output options/display format 

 

4.3.3 Input interface design 

 

The input design displaces information in windows requesting the user to specify the basic information 

required for the construction of the timetable. The operation menu in Fig. 5 shows the different data that can 

be supplied into the system. 

 

 
 

Fig. 5. Input options/display format 
 

4.3.4 Program design 

 

The first stage here is to create the classes for the system, the second was to experiment with the genetic 

algorithm concept which would then progress to stage three to improve it and finally to stage four where the 

aim was to create a standalone program. 
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One of the key requirements in designing the system was to make it extremely modular so that any aspect of 

the genetic algorithm could easily be changed without drastically affecting other areas of the system. Whilst 

there is plenty write up about the various methodologies that can be used to implement a genetic algorithm, 

there are no hard rules about which are best suited to a particular situation. Fig. 6 below depicts the class 

diagram description of the program development.  

 

 
 

Fig. 6. Class diagram of the system 
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5 System Testing 

 
System testing ensures that the entire integrated software system meets requirements. It tests a configuration 

to ensure known and predictable results. System testing is based on process descriptions and flows, 

emphasizing pre-driven process links and integration points. The Tables 3, 4 and 5 below displays some real 

life data as obtained from the School of Science which was used to test the different functionalities of the 

entire system while Figs. 7, 8 and 9 give some sample output of some test cases carried out on the complete 

system. 

 

Table 3. Course table 

 

 
 

Table 4. Lecture time 

 

 
 

Table 5. Lecture venues 
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5.1 Test case 1: Testing for number of clashes 

 
The average number of related clash with regards to population increase was recorded, and the results were 

as displayed in the Figs. 7 and 8. The population size should therefore be large because a bigger population 

size leads to a better representation and a wider search. The downside of increasing population is that the 

calculation time increases proportionally. 

 

 
 

Fig. 7. Population size vs. number of clashes 

 

 
 

Fig. 8. Number clashes vs. number of generation 

 

5.2 Test case 2: Testing for system convergence 

 
This test was aimed at determining the convergence of the genetic algorithm with number of generation. The 

average number of fitness value with regards to increasing the number of generations was recorded, and the 

result were as displayed in the Fig. 9. From the graph of Fig. 9 the fitness value of the genetic algorithm 

tends to increase very fast at the early stage of generation, but this gradually eases off to nearly the same 

fitness value as the number of generation increases. However the fitness value never reached the value of 

one as it was very difficult to satisfy every soft constraint that is specified in the program. 
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Fig. 9. Fitness vs. number of generation 

 

5.3 Test case 3: Output of venue timetable 

 
Fig. 10 displays the tests result for the lecture venue output. This test is to ensure that the different venue 

lecture timetable can be printed. 

 

 
 

Fig. 10. Test case 1 timetable for NSC 1 

 

5.4 Test case 4: Output of individual lecturer timetable 

 
This test was carried out to ensure that the individual lecturer timetable printed actually reflects the course 

allocated to them and that it is on the general time table.  

 

 
 

Fig. 11. Timetable for Hamza Soye 
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5.5 Test case 5: Error messages for a duplicate value  

 
This test is carried out to ensure that no particular course or venue is entered more than once into the system. 

Duplicating a value can affect chromosome representation and the entire timetable.   

 

 
 

Fig. 12. Error message for duplicating a course 

 

6 Discussion  

 
After receiving initial data, such as lecturers and their courses, course groups and their courses, lecture 

venues and their capacities, the system was subjected to various tests. A system run of between 50 to 500 

generations are set in the experiment, without considering probability of selection, crossover and mutation. 

The maximum best fitness value, that is 1, could not be achieved due to difficulties in satisfying all soft 

constraints. But all hard constraints were satisfied which implies that all courses can be allocated to different 

rooms and time-slots.  

 

From Figs. 10 and 11 it is clear that every class meeting has their room. Hamza Soye teaches EDU on 

Monday at 9:00 to 10.00. The system is able to do this by looking at the room table in the database. It is easy 

to search for rooms by comparing the room size, their location etc, using the requirement of each class as 

specified in the database. After a room had been allocated, the status of that room is changed not available 

for that particular day and hour. 

 

As observed in the graph of Fig. 7, the number of clashes in a course timetabling increases in proportion 

with the population size. These clashes however reduces to a zero level as the number of generation 

increases indicating a continuous improvement in the fitness value of the generated parents over time as seen 

in Fig. 9. The population size should therefore be large because a bigger population size leads to a better 

representation and a wider search. The downside of increasing population is that the calculation time 

increases proportionally. 
 

From the graph of Fig. 9 the fitness value of the genetic algorithm tends to increase very fast at the early 

stage of generation, but this gradually eases off to nearly the same fitness value as the number of generation 

increases. However the fitness value never reached the value of one as it was not possible to satisfy all the 

soft constraints specified in the program. It was observed that faster convergence rates normally lead to a 

greater number of populations being stalled at a local maximum. In others words faster convergence implies 

a narrower search and a wider search leads to a slower convergence. Rate of convergence can be seen 

graphically by observing how the fitness of the best chromosome evolves from generation to generation in 

Fig. 9. This result is similar to what was obtained in Kuldeep [20], Chohan [21], and Aydin [22] which 

shows that genetic algorithm exhibits similar characteristics when applied to solve timetabling problem as 

long as the chromosome representation is properly formed irrespective of the number of complexity. 
 

7 Conclusions and Future Research  

 
The timetabling problem may only be solved when the constraints and allocations are clearly defined and 

simplified thoroughly and more than one principle is applied to it. This is because an improper 
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representation of chromosomes in a population based heuristic search can lead to a high level violation of the 

problem constraints (Anam et al. [23]).  Based on the evaluation carried out on the completed system it has 

shown that the completed system worked effectively well. Therefore using this approach will definitely 

ensure a clash free timetable for any college of education. This software makes the timetable production 

process faster, while the genetic algorithm ensure that only the fittest population got displayed as the final 

timetable. Hence, it can be concluded that with a correct input data, the genetic algorithm will generate 

“good” timetable for big schools no matter their complicated teaching plan. 

 

In an attempt to create a valid timetable, most of the soft constraints were removed from the fitness function 

during implementation and were never re-introduced, mostly due to program complexity. In real world 

situations there are preferences that can make a timetable more flexible. The inclusion of certain soft 

constraint such as lecturers preferring some specific free periods or some part of days off will require a more 

efficient search technique.   

 

Efficiency of the timetable could be further enhanced by embedding genetic algorithm with other methods 

such as particle swam algorithm, and fussy system etc. Embedding these algorithms with genetic algorithm 

may produce a better result in a more limited time. The timetable can also be made more flexible by making 

it an online system to enable lecturers and students have access to their timetable online. The research should 

be repeated with more recent meta-heuristic algorithm such as flower pollination algorithm because it has 

shown to be better than the genetic algorithm in solving optimization problems (Chiroma et al. [24-25]), 

hybridization of recurrent neural network and cuckoo search algorithm (Nawi et al. [26]) and lastly, hybrid 

cuckoo search (Chiroma et al. [27]). 
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