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Abstract

In this paper, we fit the hyper-Poisson, and the Mittag-Leffler function (MLFD) distributions to
data exhibiting over and under dispersion. Three frequency data sets were employed with one
exhibiting under-dispersion. We also extend these distributions to GLM situations where we have
a set of covariates defined in the form x′β. In all, we compared the negative-binomial (NB), the
generalized Poisson (GP), the Conway-Maxwell Poisson (COMP), the Hyper-Poisson (HP) and
the MLFD models to the selected data sets. The generalized linear model (GLM) data employed
in this study is the German national health registry data which has 3874 observations with 41.56%
being zeros-thus the data is zero-inflated.
Our results contrast the results from these various distributions. Further, theoretical means and
variances of each model are computed together with their corresponding empirical means and
variances. It was obvious that the two do not match for each of our data sets. The reason being
that the models all have infinite range of values than the random variable Y can take, but the
data has a finite range of values. It is therefore not unusual for the sum of estimated probabilities
being less than 1.00 and consequently, the sum of the expected values are usually less that the
sample size n. However, if the range of values of Y are extended beyond the given data value,
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both theoretical and empirical moments as expected would be equal. We explore an alternative
model for one of the data set. In contrast, most results in the literature sometimes just assume

that the last category k has probability

(
1−

y(k−1)∑
k=1

p̂k

)
, which does not truly reflect the

underlying probability structure from the data.

We have employed SAS PROC NLMIXED in all our computations in this paper with the choice
optimization algorithm being the conjugate gradient algorithm. We also computed the Wald test
statistic for each data based on both the theoretical and empirical means and variances.
Our results extend previous results on the analyzes of the chosen data in this example. Further,
results obtained here indicate that some results in earlier studies on the data employed in this
study may be in accurate. In others, our results are consistent with previous analyses on the
data sets chosen for this article. While we do not pretend that the results obtained are entirely
new, however, the analyses give opportunities to researchers in the field the opportunity of
implementing these models in SAS.

Keywords: Hyper-Poisson; negative binomial; overdispersion; underdispersion; GLM.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

For count data exhibiting over-dispersion or under-dispersion, probability distributions with extra
dispersion parameters such as the negative-binomial (NB), the generalized Poisson (GP), the double
Poisson and several other distributions (e.g. the Poisson Inverse Gaussian, the NB-Lindley [1], [2],
[3], the NB-generalized exponential [4] distribution and many more. Several other distributions
have also been employed to model over-dispersed or under-dispersed count data.

While the Poisson distribution is the underlying probability model for count data, its use had
been restricted because of the absence of dispersion parameter in its function since both mean and
variance are equal, thus leading to equi-dispersion: the ratio of the variance to the mean, which
in this case equals 1.00. Consequently, several alternative models utilizing the extended Poisson
e.g., the Generalized Poisson [5], the double-Poisson [6], the weighted Poisson, [7]. Most recently
however, there has been serious revival of the developments of Poisson based distributions. Notable
amongst these are:

1. The Hyper-Poisson Distribution (HP)

2. The Conway-Maxwell: Com-Poisson distribution (COMP) and

3. The Mittag-Leffler function distribution (MLFD)

We will in this paper compare the performances of the above distributions with the negative binomial
(NB) and the generalized Poisson (GP) distributions for situations where we have

(a) Frequency count distribution exhibiting over dispersion

(b) A frequency data exhibiting under-dispersion

(c) GLM application of all the models to the German Health data having four covariates

We begin our discussion in this paper with brief introductions to some of these distributions.
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2 The Hyper-Poisson Distribution

The hyper-Poisson (HP) distribution first proposed by [8] and [9] is a two-parameter discrete
distribution with probability density function (pdf)

P (Y = y|λ, β) = Γ(β)

Γ(β + y)
.

λy

ϕ(1, β;λ)
; y = 0, 1, . . . , ; β, λ > 0 (2.1)

where

ϕ(1, β;λ) =

∞∑
k=0

(1)k
(β)k

.
λk

k!
=

∞∑
k=0

Γ(β)

Γ(β + k)
λk (2.2)

and

(β)k = β(β + 1)(β + 2) . . . (β + k − 1) =
Γ(β + k)

Γ(β)
; k = 1, 2, . . . ,

is the confluent hyper-geometric series in which (β)0 = 1.

2.1 Its mean and variance

[10] gave expressions for the mean and variance of HP distribution as:

µ =
ϕ(2, β + 1, λ)

ϕ(1, β, λ)
.
λ

β

σ2 =
1

β

[
2

β + 1

ϕ(3, β + 2, λ)

ϕ(1, β, λ)
− 1

β

[ϕ(2, β + 1, λ)]2

[ϕ(1, β, λ)]2

]
λ2 + µ

(2.3)

where:

ϕ(1, β;λ) =

∞∑
k=0

Γ(β)

Γ(β + k)
λk

ϕ(2, β + 1;λ) =

∞∑
k=0

(k + 1) Γ(β + 1)

Γ(β + k + 1)
λk

ϕ(3, β + 2;λ) =
∞∑

k=0

(k + 2)(k + 1)

2
.

Γ(β + 2)

Γ(β + k + 2)
λk

The probability generating function of the HP distribution is given by [7] as:

g(s) =
ϕ(1, β + 1, λs)

ϕ(1, β, λ)
(2.4)

Alternatively, we could obtain the mean and variance empirically from expressions:

E(Y ) =

∞∑
j=0

jP (Y = y|λ, β)

Var(Y ) =

∞∑
j=0

j2P (Y = y|λ, β)− [E(Y )]2
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3 The Mittag-Leffler Function Distribution-MLFD (λ, α, β)

This Mittag-Leffler function distribution (MLFD) belongs to the generalized hypergeometric and
generalized power series families and also arises as weighted Poison distributions. The MLFD
(λ, α, β) has the probability density function (pdf)

P (Y = y) =
λy

Γ(αy + β) Eα,β(λ)
; y = 0, 1, . . . , λ, α, β > 0 (3.1)

where

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)

is the generalized Mittag-Leffler function.

3.1 Properties of MLFD (λ, α, β)

Following [11], the following are some of the characteristics of the MLFD distribution:

(a) When α = β = 1, then the MLFD (λ, α, β) reduces to the Poisson distribution with parameter
λ.

(b) When α = 0, and β(≥ 0), then MLFD (λ, α, β) becomes the geometric distribution with
parameter λ provided |λ| < 1

(c) When α = 1, and β(≥ 0) then MLFD (λ, α, β) reduces to the HP (λ, β)

[11] also discussed extensively, the properties of the MLFD including empirical plots of its probability
mass functions for various combination values of (λ, α, β). Also discussed are its generating and
cumulative distribution functions along with expressions for its moments. It was shown that the
MLFD(λ, α, 1) has the distribution of a queuing system.
[11] further expressed the probability generating E[sx] of the MLFD as:

P (s) = Eα,β(λs)/Eα,β(λ) =

∞∑
k=0

(λs)k/Γ(αk + β)

∞∑
k=0

(λ)k/Γ(αk + β)

(3.2)

and it can be shown (see Appendix I) that the mean and variance of the MLFD can be obtained
from the following expressions: viz:

µ =

∞∑
j=1

jλj

Γ(jα+ β)
/

∞∑
k=0

λk

Γ(kα+ β)
= µ

′
1 (3.3)

E[X(X − 1)] =
∞∑
j=2

j(j − 1)λj

Γ(jα+ β)
/

∞∑
k=0

λk

Γ(kα+ β)
= µ

′
2 (3.4)

Consequently,

var(X) = µ
′
2 + µ

′
1 − µ

′
1

2
(3.5)

The mean and variance reduce to that of the hyper-Poisson (HP) when α = 1 in (3.3) and (3.5)
respectively.

4



Lawal; BJMCS, 21(3), 1-17, 2017; Article no.BJMCS.32184

4 The Com-Poisson Distribution

For a random variable Y , [12] introduced the Conway-Maxwell Poisson (COM-Poisson) distribution
defined by:

f(y|λ, ν) = λy

(y!)ν
1

Z(λ, ν)
, yi = 0, 1, 2, · · · , λ > 0, ν ≥ 0. (4.1)

Where

Z(λ, ν) =

∞∑
j=0

λj

(j!)ν
. (4.2)

is the the normalizing term and ν is the dispersion parameter such that if ν > 1 we have under
dispersion, and when ν < 1, we have over-dispersion. The distribution reduces to the Poisson
distribution when ν = 1. The means and variance of Yi are respectively given as:

E(Y ) =
1

Z(λ, ν)

∞∑
j=0

j λj

(j!)ν
(4.3)

and,

Var(Y ) =
1

Z(λ, ν)

∞∑
j=0

j2 λj

(j!)ν
− E(Y )2 (4.4)

The basic properties of the Com-Poisson model have been presented in [12] and [13] and most
recently by [14] who provided an excellent review of this distribution, its properties and applications.
[15] has also modeled this distribution for frequency data. The model has been extended in [16]
and a Com-Poisson type negative binomial model was proposed by [11]. The distribution has been
found to be most useful for under-dispersed count data.

5 Estimation

The log likelihood of a single observation i from HP, MLFD and COMP are given in expressions
(5.1a) to (5.1c) respectively:

LL1 = yi log(λ) + log Γ(β)− log Γ(yi + β)− log

[
∞∑

k=0

Γ(β)

Γ(β + k)
λk

]
(5.1a)

LL2 = yi log(λ)− log Γ(αyi + β)− log

[
∞∑

k=0

λk

Γ(αk + β)

]
(5.1b)

LL3 = yi log λi − ν log yi!− logZ(λi, ν) (5.1c)

Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in
SAS, which minimizes the function −LL(y,Θ) over the parameter space Θ numerically. The integral
approximations in PROC NLMIXED is the Adaptive Gaussian Quadrature [17] and the Conjugate
Gradient optimization algorithm in PROC NLMIXED (CONGRA) of [18] and [19] and the quasi-
Newton algorithm (QUANEW) were employed in our computations. Convergence is often a major
problem here and the choice of starting values is very crucial. For each of the cases considered here,
the above two optimizing algorithms were applied in turn to ascertain accuracy and consistency.
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Although the results differ very slightly, on the whole, they both agree very well. Thus we may
note here that each of these give slightly different parameter estimates. They all give values that
are very close.

Other distributions considered in this study are the negative binomial (NB) and the generalized
Poisson distribution (GP). Both have the log-likelihoods functions:

LL4 = log Γ(yi +
1

k
)− log Γ(yi + 1)− log Γ(

1

k
) + yi log(kµi)− (yi +

1

k
) log(1 + kµi) (5.2a)

LL5 = yi log

(
µi

1 + αµi

)
+ (yi − 1) log(1 + αyi)−

µi(1 + αyi)

1 + αµi
− log(yi!) (5.2b)

While the dispersion parameter for the NB is designated as k, that for the GP is α and the
corresponding means and variances for the two models are given respectively in (5.3).

E(Y ) = µi; and Var(Yi) = µi + k µ2
i .

E(Y ) = µi; and Var(Yi) = µi(1 + αµi)
2.

(5.3)

The GP reduces to the Poisson when α = 0 and the dispersion factor Var(Yi)/E(Yi) = (1 + αµi)
2.

If α > 0, then Var(Yi) > E(Yi) and the GP will model count data with over-dispersion. Similarly,
when α < 0, then Var(Yi) < E(Yi) and the GP will in this case be modeling under-dispersed count
data.

6 Data Examples

For all the examples in this article (both frequency count and GLM), we have written our own
programs to implement them in PROC NLMIXED in SAS. While we are aware that SAS PROC
COUNTREG and PROC HFMM can fit some of these models, however, these customized programs
can not answer all the question we need to ask regarding these models. The implementation of these
models is based on the log-likelihood functions presented in LL1 to LL5 in the previous section.
In this study, we considered three frequency data sets that appeared in the literature.

6.1 Example data I

The data in this example is the frequency data set on insurance claims and incapacity caused by
sickness or accident which was analyzed in [20] and [21]. The data is presented in 1.

Table 1

For this data, the observed mean and variance are respectively, ȳ = 2.80587 and s2 = 6.41062.
Consequently, the index of dispersion(ID) s2/ȳ = 2.8255 which clearly indicates over-dispersion
since ID> 1. Thus there is a need to correct for over dispersion in this data. The results of applying
the models discussed in this paper to this data are presented in 2.

Results in 2 indicate that the MLFD, the NB, the GP, the COMP, the HP and the Poisson in that
order have the lowest -LL (log likelihood) in that order. Thus the MLFD would seem to be the
best model for this data but is closely followed by the Negative binomial. because of optimization
problems, we will discuss all the models later in this paper. The most obvious observation in relates
to the estimated variance under the Poisson. It grossly underestimates the observed variance of
6.41062 in the data. We see clearly that all the other models tried to adjust their variances and are
all not too far from the observed variances. We will discuss this in more details later.

6
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Table 2. Parameter estimates for the models

Apart from the Poisson model, all other models considered in this study the (NB, GP, COMP, HP,
and the MLFD) produce estimated probabilities over the range of Y, (in example data I, this is
0 ≤ Y ≤ 15) that do not add to 1.00 and consequently, the sum of the expected values do not sum
to 1506 in this case. This is true of all these probability models since the range of values of Y is
usually infinite even though we have real life data with finite range of values of Y , like the [0,15] in
this case. To further accentuate this, we present in 3, for instance, the predicted probabilities and
expected values, together with their cumulative values under model HP applied to the data in 1.

Under the HP model, the parameter estimates agree with those in [11]. In 3 are the estimated
probabilities p̂y, the estimated cumulative probabilities, P (Y ≤ y), the expected values m̂y, the

cumulative expected values

yi∑
y=0

m̂y, and products

yi∑
y=0

yi.p̂y and

yi∑
y=0

y2
i .p̂y.

Table 3. Estimated probabilities and expected values under the HP model

We notice immediately, that for our data, P (Y ≤ 15) = 0.99978 < 1.0000 with
∑

m̂i = 1055.77 <
1056. Under this circumstance, (ȳ, s2) = (2.8022, 6.2272). However, the theoretical values are

7
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respectively 2.80587 and 6.26810, using expressions in (2.3), since ϕ(1, β̂, λ̂) = 5.2346;ϕ(2, β̂+1, λ̂) =
15.3816 and ϕ(3, β̂ + 2, λ̂) = 34.9148 in this case. Because the HP model has infinite range for its
random variable Y (this is true for all models in this study), we see from 3 that it was not until
Y = 20 that we have the cumulative probability summing to 1 and the sum of expected values
being 1056 (the observed sum in the data). Clearly, for the range of our data (0 ≤ Y ≤ 15), the
empirical means are:ȳ = 2.802211 and s2 = 14.079537−(2.802211)2 = 6.2272 and that the estimated
probabilities only sum to one for Y in the range y = 0, 1, . . . , 20. In this case, µ̂ = 2.805820 and
σ̂2 = 14.139906 − (2.805782)2 = 6.2673. The theoretical values of the mean and variance using
expressions in (2.3) are respectively, µ̂T = 2.8059 and σ̂2

T = 6.2681. The empirical and theoretical
Wald test statistics computed with empirical and theoretical values are respectivelyX2

E = 1086.0767
and X2

T = 1078.9876, where,

X2 =

15∑
i=0

(yi − m̂i)
2

σ̂2
i

. (6.1)

Perhaps it should be pointed out here that the same problems with regards to cumulative estimated
probabilities not summing to one over the range of values Y in the data is encountered for the MLFD,
Com-Poisson, NB and GP models because they are all defined over an infinite range of values of
Y. Consequently, we would have to contend with these observations and realities when we employ
these models to fit our data.

Under the MLFD(λ, α, β), we observe that,

15∑
y=0

p̂y = 0.99921; while,

24∑
y=0

p̂y = 1.0000

Consequently, the sum of the expected values over these two ranges are respectively 1055.17 and
1056. The latter equaling the sample size in the data. Here again the empirical mean and variance
in the range 0 ≤ Y ≤ 15 are ȳ = 2.792326 and s2 = 14.016856 − (2.792326)2 = 6.2198, and in
the range 0 ≤ Y ≤ 24, we have µ̂ = 2.805782 and σ̂2 = 14.250377 − (2.805782)2 = 6.37796. The
theoretical values of the mean and variance using expressions in (3.3) and (3.5) are respectively,
µ̂T = 2.80587 and σ̂2

T = 6.37979. Similarly, the Wald test statistics computed with empirical and
theoretical values are respectively X2

E = 1087.3979 and X2
T = 1060.2793, where X2 is as defined in

(6.1).

For the Com-Poisson model

15∑
y=0

p̂y = 0.99948 with
∑

m̂y = 1055.4519 < n, while

28∑
y=0

p̂y = 1.0000

with of course,
∑

m̂y = 1056 = n. Consequently,the empirical central moments are ȳ = 2.7900
and s2 = 6.1192. These contrast with the theoretical values µT = 2.8059 and σ2

T = 6.2873 and
corresponding values of the GOF being X2

E = 1105.2885 and X2
T = 1075.6976. It is again note

worthy to observe that in the range 0 ≤ Y ≤ 28, the empirical means and variance are 2.8059 and
6.2872, these are as expected, very close to the theoretical values.

While the mean and variance of the observed data are 2.80587 and 6.41062 respectively, we see
from tables 2 & 4, that the Poisson model does not fit because its variance does not adjust for
over-dispersion in the data. For both the NB and GP, the empirical estimated means and variances
are not equal to the theoretical values displayed in (4.4)

Thus, in these cases, the variances equal theoretically, 6.4958 and 6.6125 respectively. Both models
have theoretical variances not too far from the observed data variance of 6.4106. However, for the
GP for instance, the empirical mean and variance are respectively 2.7767 and 6.2475. The reason

8
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being that for the GP for instance:

15∑
y=0

f(y|µ̂, τ̂) = 0.99836 < 1.0000 but

29∑
y=0

f(y|µ̂, τ̂) = 1.0000.

In both cases, (i)

15∑
y=0

y× p̂(y) = 2.77667 and

15∑
y=0

y2× p̂(y) = 13.9574 giving us an empirical variance

of 6.2475. (ii) In the second case however,

29∑
y=0

y × p̂(y) = 2.805796 and

29∑
y=0

y2 × p̂(y) = 14.482996

giving us an empirical variance of 6.6096.

Table 4. Expected frequencies, empirical and theoretical moments, together with
the GOF statistics under the six models

From table 4, the observed mean and variance are presented in boldface, ȳ and s2 are the empirical
mean and variance for the data under various distributions in the range 0 ≤ Y ≤ 15. On the
other hand, µT and σ2

T are the theoretical empirical mean and variance of the distributions. All the
distributions in the first panel, excluding the Poisson have means that are very close to the observed
mean of 2.8059 and they all have adjusted variances that are very close to the observed variance
of 6.4106. The row Y ≤ a indicated the value of Y = a required for the estimated probabilities to
sum to 1. Clearly, none of them apart from the Poisson, equals 15, the largest values of Y in the
example data. The NB model fits very well, and it is quite obvious based on this data that all these
models behave equally well but then, the NB is much easier to fit than the other models. However,
for under-dispersed data as we will see in Example III, the NB does not often converge well. We
consider these distributions in Example II.

6.2 Example II

The data in this example was analyzed in [22] and relate to vaccine adverse event count, where
4020 observed systemic adverse events for four injections administered to each of the 1005 study

9
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participants tabulated by the number of such adverse events occurrences. The data is presented in
table 5.

Table 5. The actual frequencies correspond to 4020 observed systemic Adverse
events for four injection for each of th e1005 stud

6.3 Results

Our results here are very similar to those in table 4, with the Generalized Poisson doing very well
here. Again, in terms of estimated probabilities, the HP and MLFD models will give estimated sum
of probabilities for the least values of Y (in this case, 16 & 17) as compared to NB and GP with 21
and 23 respectively. Again, the variances are adjusted for each of these distributions to account for
over-dispersion and all very close to the observed mean and variance of the example data.

It is evident from results in tables 4 and 5 that apart from the Poisson model (and to some extent
the NB), all models considered here do not have their estimated cumulative probabilities summing
to 1 and consequently, the sum of expected values do not necessarily add to the sample size n. It
is particularly more serious for the NB and GP models. The HP, Com-Poisson (COMP) and the
MLFD give values much closer to the theoretical assumptions. For instance, in table 4, the true
sample size is 1056, but we see that the GP gives 1054.27 while the HP and COMP give respectively
1055.73 and 1055.452 (much closer to the true value). Most authors often add this difference to
the last category expected value, such that for instance, in table 4, m̂15 under the GP model now
becomes (1056 − 1054.72) + 0.966 = 2.696 instead of the estimated 0.966 under this model. This
way, the sum of the estimated frequencies now sum to n = 1056. We can overcome this subjective
approach by instead fit a model with the log-likelihood of a single observation i of the form:

LL = (1− δ) log[P (Yi = yi)] + δ log[P (Yi ≥ C)]; where δ =

{
0 for yi < C

1 for yi ≥ C
. (6.2)

and C is the last category of the data. In our example I, this would be C=15. To accomplish this,

10
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first we compute:

W =

C−1∑
j=0

f(yj) (6.3)

for each of the distributions NB, GP, HP, MLFD and COMP. The expression in (6.2) for the
Com-Poisson (COMP) model for instance would be:

LL = (1− δ)(LL) + δ log(1−W ) (6.4)

where LL represents the log-likelihood LL3 in (5.1c) for the Com-Poisson model. Thus, for the
Com-Poisson model, the above in (6.4) becomes:

LL = (1− δ)[(y log(λ)− ν log(y!)− log{Z(λ, ν)}] + δ log(1−W ); (6.5)

Here,

Z(µ, ν) =

∞∑
j=0

λj

(j!)ν
; and W = 1− 1

Z(λ, ν)
.

C−1∑
k=0

λk

(k!)ν
.

Once the parameters λ and ν are successfully estimated, the estimated probabilities and expected
values are computed viz:

p̂i =

{
exp{i log(λ̂)− ν̂ log(i!)− log[Z(λ̂, ν̂)]} for 0 ≤ i ≤ (C − 1)

exp{log(1− Ŵ )}
(6.6)

Here again,

Z(λ̂, ν̂) =

∞∑
j=0

λ̂j

(j!)ν̂
; and Ŵ = 1− 1

Z(λ̂, ν̂)
.

C−1∑
k=0

λ̂k

(k!)ν̂

The results of implementing this approach (sometimes referred to as right truncated) is presented
in the last two columns of table 4 for just the NB and COMP distributions only. Clearly now,
the estimated probabilities sum to 1.00 in the range 0 ≤ Y ≤ 15 and consequently, the expected
values also sum to n. However, this does not have much effect. A case where this approach makes
a considerable impact is presented in [[16]].

6.4 Example III: insurance data

The third set of data is from [23]. Because the data is under-dispersed, both the NB and GP models
do not lend themselves adaptable to fitting under-dispersed count data. In fact for this data set, the
two models when applied, give estimates corresponding to the Poisson, with dispersion parameters‘
estimates being in the order of 10−6 = 0. The results of applying the other models considered in
this paper to this data set is presented in table 6, where the Y’s are the number of insurance claims
and the counts are the frequencies of each claim for a given number of claims.

6.5 Results

While both the NB and GP models are not suitable for this data set, the Com-Poisson, HP and
MLFD models cope well with this under-dispersed data set. Thus for under-dispersed data, either
the HP, MLFD or Com-Poisson distributions will be suitable. The choice of models of course
depends on the optimization technique employed as well as the choice of initial parameter estimates.
The Com-Poisson is much easier to fit than either the HP or MLFD models.
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Table 6. Parameter estimates and expected frequencies under the models applied to
this data set

7 GLM Applications

In this section, we would employ the NB, GP, COMP, HPP and MLFD models to data having covariates.
For data having covariates (x1, x2, . . . , xp)′, the mean and dispersion parameter will be modeled as:

λi = exp(x′b)

disp. = exp(x′a)

where (b0, b1, b2, . . . , bp)′ and (a0, a1, a2, . . . , ap)′ are parameter estimates to be estimated. The above
assumes that we have a variable dispersion parameter (β for instance for the HP model) that varies and
is dependent on the covariates, otherwise, we could also model the dispersion parameter as a constant by
assuming that βi = exp(a0), where a0 is a constant. We explore these two possibilities, by applying these
models to the German national health registry data described in the following section.

7.1 The German health data

We will employed the very well analyzed German national health registry data [24] set which comprises of
3874 respondents. The response variable is the number of visits made by a patient to a physician (y) during
the year, the age of the individual (age), Outwork (1=if patient is not working; 0=if patient is working),
gender (1=female, 0 if male) and marital status (1 if married; 0 if not married). Thus the covariates here
are outwork, age, gender, married. The response variable Y is the count variable with minimum 0 and
maximum 121, mean 3.162881 and variance 39.387611. Thus the index of dispersion(ID) here is 12.4531,
indicating a very strong over-dispersion. In addition, 41.58% of the data have zero counts. The Com-Poisson
employed here is the one based on [2] formulation and all models will be fitted using PROC NLMIXED in
SAS.
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7.2 Results

The results of applying these models to the case where we have a constant dispersion parameter (though
not necessarily constant for each of the 3874 observations but independent of the covariates). These results
are presented in table 7.

Table 7. Application of the models to the german data

Models
Parameters NB GP COMP HP MLFD
intercept -0.1068 -0.1339 -0.5610 23.0248 -0.5666

(0.1132) (0.1214) (0.0220) (0.0688) (0.0410)
outwork 0.2847 0.2961 0.0583 0.0577 0.0577

(0.0594) (0.0662) (0.0106) (0.0104) (0.0105)
age 0.0239 0.0247 0.0053 0.0051 0.0051

(0.0024) (0.0027) (0.0004) (0.0004) (0.0004)
gender 0.3211 0.3502 0.0671 0.0663 0.0662

(0.0564) (0.0613) (0.0105) (0.0104) (0.0104)
married -0.1650 -0.1951 -0.0202 -0.0195 -0.0188

(0.0649) (0.0746) (0.0099) (0.0097) (0.0097)
dispersion 2.2612 0.6896 0.0067 > 108 7.3907

(0.0701) (0.0186) (0.0013) (5047*)
α 0.0000

(0.0116)
X2 5662.2748 4778.8622 11417.4911 11201.4174 11203.5191
-2LL 16625 16668 17420 17365 17365
AIC 16637 16680 17432 17377 17379

For constant dispersion parameters, the Com-Poisson, HP and MLFD did not perform as well as the NB
and the GP models having co-variates. The GP performs much better in this case. In fact for this data,
the MLFD has α̂ almost zero, which reduces it to the geometric distribution. The Wald test statistics for
COMP, HP and MLFD models are unnecessarily high compared to their NB and GP counterparts. The
-2LL and AIC values also indicate that both NB and GP are better alternatives to the HP-type models.
A further complication relates to convergence issues with COMP, HP and MLFD models. The choice of
initial values are very crucial, just as well as the technique for optimization (the conjugate gradient is most
adaptable while the Newton-Rapson or Nelder-Mead or quasi-Newton optimization techniques usually create
convergence problem. The method of integration in all cases being adaptive quadrature. We consider in
the next section, dispersion parameters for each of these models that are functions of all or some of the
covariates. Here however, we employ all the covariates.

7.3 Models with varying dispersion parameters

In this section, we represent the dispersion parameters as a function of the covariates. For instance, for the
NB and HP models, these are equivalent to:

k = a0 + a1 outwork + a2 age + a3 female + a4 married

β = a0 + a1 outwork + a2 age + a3 female + a4 married

The ai, i = 0, 1, 2, 3, 4 are not the same for both models. Thus for each of the models, the dispersion
parameters are modeled as functions of the covariates. The results of this analysis is presented in table 8.
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Table 8. German data-results for variable dispersion parameters

Models
Parameters NB GP COMP HP MLFD
Intercept -0.0966 -0.1009 -0.56667 10.1143 -0.6414

(0.1207) (0.1335) (0.0217) (0.1114) (0.0043)
outwork 0.2497 0.2466 0.0577 0.1744 0.0453

(0.0591) (0.0650) (0.0105) (0.0642) (0.0097)
age 0.0236 0.0237 0.0051 0.1907 0.0064

(0.0024) (0.0027) (0.0004) (0.0023) (0.0002)
gender 0.3121 0.3150 0.0662 1.0456 0.0720

(0.0581) (0.0640) (0.0104) (0.1397) (0.0107)
married -0.1357 -0.1387 -0.0188 0.2050 -0.0064

(0.0661) (0.0759) (0.0097) (0.1278) (0.0092)
dispersion
intercept 1.6802 0.6358 -8.4057 10.6809 0.0538

(0.1400) (0.1214) (1089.11)* (0.1001) (0.3550)*
outwork -0.1008 -0.1545 -0.6620 0.1167 -0.1798

(0.0711) (0.0611) (449.01)* - (-)*
age -0.0125 -0.0157 -0.2722 0.1856 0.0795

(0.0029) (0.0025) (38.7020)* (0.0023) (0.3637)*
gender -0.3432 -0.3435 -0.7430 0.9794 -0.6399

(0.0691) (0.0597) (315.93)* (0.1399) (16.6104)*
married -0.0871 -0.0396 0.4269 0.2239 -0.0000

(0.0750) (0.0597) (337.61)* (0.1268)* (13.9625)*
α 0.0002

(0.0004)
X2 5630.1392 4253.2110 11203.5841 11203.5247 12083.6182
d.f. 3864 3864 3864 3864 3863
-2LL 16555 16545 17365 17365 17365
AIC 16575 16565 17385 17385 17387

Results from this analysis indicate that for the COMP, HP and MLFD models, the concept of variable
dispersion parameter can be very difficult to implement and all the parameter estimates seem to be un-
important in the model. HP model shows that, perhaps only age can probably be included as a covariate in
the dispersion model. It should be obvious that we do not need all the covariates in the dispersion parameter
formulation. Usually only a subset of the covariates may prove useful.

On the other hand, both the NB and GP benefited from the use of the covariates. For the GP for instance,
the change in -2LL is (-16545+16668)=123 on 5 d.f. which is highly significant, indicating that the GP with
variable dispersion provides a better fit than the usual GP model.

8 Conclusions
Based on the results in this study, we have the following observations:

(a) For most practical purposes, both the negative binomial and generalized Poisson models behave very
well except for under-dispersed data.

(b) For under-dispersed data, the Com-Poisson, HP and MLFD models provide better fit.

(c) The HP and MLFD converges much faster than the Com-Poisson, especially in the infinite summation
of the normalizing constants

(d) The implementation of a variable dispersion parameter incorporating some or all of the covariates creates
convergence problems in the HP, COMP and MLFD models, especially with regards to providing
initial parameter estimates for the optimization algorithm. Both the NB and GP models handle this
fairly well and could well be employed instead of the constant parameter model.

(e) All the models have estimated empirical probabilities that do not necessarily sum to 1.00. Consequently,
models that employ right truncation would provide better alternatives to modeling with HP, COMP
and MLFD models as well as the NB and the GP models, the latter two providing cumulative
estimated probabilities that are even much < 1.00.
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Appendix
The probability generating E[sx] of the MLFD [[11]] can be expressed as:

P (s) = Eα,β(λs)/Eα,β(λ) =

∞∑
k=0

(λs)k/Γ(αk + β)

∞∑
k=0

(λ)k/Γ(αk + β)

(.1)

The numerator can be written for k = 0, 1, 2, 3, 4, . . . as:

1

Γ(β)
+

λs

Γ(α+ β)
+

λ2s2

Γ(2α+ β)
+

λ3s3

Γ(3α+ β)
+

λ4s4

Γ(4α+ β)
+

λ5s5

Γ(5α+ β)
+ . . .

Hence,

P
′
(s) =

λ

Γ(α+ β)
+

2λ2s

Γ(2α+ β)
+

3λ3s2

Γ(3α+ β)
+

4λ4s3

Γ(4α+ β)
+

5λ5s4

Γ(5α+ β)
+ . . . , for k = 1, 2, 3, . . . (.2)

Thus,

P
′
(1) =

λ

Γ(α+ β)
+

2λ2

Γ(2α+ β)
+

3λ3

Γ(3α+ β)
+

4λ4

Γ(4α+ β)
+

5λ5

Γ(5α+ β)
+· · · =

∞∑
j=2

jλj

Γ(jα+ β)
, for j = 1, 2, 3, . . .

Hence, µ = E(X) is given by

µ =
∞∑
j=1

jλj

Γ(jα+ β)
/

∞∑
k=0

λk

Γ(kα+ β)
= µ

′
1 (.3)

Similarly, from (.2), we have:

P
′′
(s) =

2λ2

Γ(2α+ β)
+

6λ3s

Γ(3α+ β)
+

12λ4s2

Γ(4α+ β)
+

20λ5s3

Γ(5α+ β)
+ . . . , for k = 2, 3, . . .

Thus P
′′
(1) is given by:

P
′′
(s = 1) =

2λ2

Γ(2α+ β)
+

6λ3

Γ(3α+ β)
+

12λ4

Γ(4α+ β)
+

20λ5

Γ(5α+ β)
+ . . . ,=

∞∑
j=2

j(j − 1)λj

Γ(jα+ β)
.

Therefore,

E[X(X − 1)] =
∞∑
j=2

j(j − 1)λj

Γ(jα+ β)
/

∞∑
k=0

λk

Γ(kα+ β)
= µ

′
2 (.4)

Consequently,

var(X) = µ
′
2 + µ

′
1 − [µ

′
1]

2
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