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Abstract 

The thermodynamic analysis of the coupling of one cycle in the operation of a reversible heat engine with a work-

degrading step in which the whole of the engine’s work output is frictionally degraded into heat at the temperature of its 

cold reservoir, allows identification of the fact that the engine’s reversibility is dependent on the continued availability of 

its work output. As long as this work remains available the engine will be reversible, this on reason of the fact that the 

initial condition can be restored via the simple expedient of using the said work to propel the inverse cycle. The moment 

this work becomes, for whatever reason, unavailable, restoration of the engine’s initial condition becomes impossible, 

and what was a reversible engine becomes irreversible. The inability of current thermodynamic terminology to deal with 

this situation is brought to light and a simple suggestion aimed at correcting this deficiency is advanced.  
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1. Reversibility 

According to Planck:  

A process which can in no way be completely reversed is termed irreversible, all other processes reversible. That a 

process may be irreversible, it is not sufficient that it cannot be directly reversed...The full requirement is, that it be 

impossible, even with the assistance of all agents in nature, to restore everywhere the exact initial state when the 

process has once taken place. (Planck 1960/1926, p. 84) 

As noted in Planck’s previous quote, it is the ‘restoration everywhere of the exact initial state’ what constitutes the 

requirement to be fulfilled if a process is to be called reversible. In other words, it is only on reason of the fact that all of 

the bodies involved in the process of interest can be returned to the precise condition each of them had before any change 

had taken place that the process can be called reversible.  

Let us start recognizing that any process taking place in the absence of any dissipative agents such as conduction, friction, 

electrical resistance, etc. is an optimally efficient process. In the case of spontaneous processes this qualifier means 

maximum work output, while in those non-spontaneous it translates into minimum work consumption. Let us then 

consider the optimally efficient isothermal expansion of an ideal gas. Besides the gas, this process demands the concourse 

of two other bodies: a heat reservoir and a mechanical reservoir. In it the heat Q transferred by the heat reservoir to the 

gas ends up being transformed, due to the said absence of dissipation, into an equivalent amount of work W which ends 

up in the mechanical reservoir. If we retrieve now the work previously deposited in the mechanical reservoir and use it to 

perform, also in the absence of dissipation, the isothermal compression of the gas, we will find out not only that the 

amount of work W made available by the expansion is precisely the amount required to push the gas back to its initial 

condition, but also that the amount of heat which originating in the spent work ends up being transferred to the heat 

reservoir, is identical to that this reservoir originally released to the gas. Once this forward/ reverse combination of 

processes has come to an end we will see all the bodies involved returning to their respective initial conditions: 1) the gas 

because it was forced to do so; 2) the mechanical reservoir because along the compression it released an amount of work 

identical to the one it had previously received along the expansion; and 3) the heat reservoir because along the 

compression it recuperated the amount of heat it initially released along the expansion. The fact that restoration is possible 

qualifies the expansion as reversible. The previous argument illustrates the meaning of restoration being the basis of proof 

for reversibility. Confirmation of the former is required before the latter qualifier can be attached to any given process  

2. Work-Degrading and the Reversible to Irreversible Transition 

Planck’s previous definition of reversibility as the possibility of restoring the exact initial condition once a process has 

taken place will here be used to identify the reversible or irreversible condition of the processes of Figure 1. 
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Figure 1. Two different paths to an irreversible heat transfer 

Figure 1 In the figure above process (a) represents the direct, conductive transfer of an amount of heat 𝑄ℎ from a hot reservoir 

of temperature 𝑇ℎ to a cold reservoir of temperature 𝑇𝑐 . Process (b) represents one cycle in the operation of a reversible engine 

which out of the amount of heat 𝑄ℎ produces an amount of work 𝑊 = 𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄ℎ, transferring the difference 𝑄𝑐 = 𝑄ℎ − 𝑊 

to a cold reservoir of temperature 𝑇𝑐. Process (c) is a representation of the result produced by the concatenation or combination 

of process (b) with a frictional step through which W is degraded into an equivalent amount of heat at the temperature of the 

cold reservoir 

Process (a) represents the direct, conductive transfer of an amount of heat 𝑄ℎ from a hot reservoir of temperature 𝑇ℎ to 

a cold reservoir of temperature 𝑇𝑐. This process, characterized by its null work output, is an irreversible process on reason 

of the fact that the only way possible to restore the initial condition once the said heat transfer has taken place is 

represented by the unassisted or spontaneous flow of 𝑄ℎ from the cold to the hot reservoir. This possibility is, however, 

negated by” (that) statement of experimental truth” expressed as “Heat cannot pass spontaneously from a body of lower 

temperature to a body of higher temperature” (Schmidt, 1966, p. 92). Surely, 𝑄ℎ might be transferred back from the cold 

to the hot reservoir when an optimally efficient Carnot refrigerator is inserted between the reservoirs. To run this 

refrigerator we need, however, an amount of work of magnitude 𝑤 = 𝑄ℎ[(𝑇ℎ − 𝑇𝑐)/𝑇𝑐] (Fermi, 1956/1937, p. 44) that 

we don’t have as none was generated during the occurrence of process (a). This problem can be solved by bringing in a 

work-supplying body. Even if this procedure allows for the transfer back of 𝑄ℎ from the cold to the hot reservoir it is 

incapable of restoring everywhere the exact initial condition, this on reason of the fact that it leaves two changes behind: 

A work-supplying body depleted of an amount of energy 𝑤, and a hot reservoir taking back an amount of heat 𝑤 in 

excess of that it originally released. 

Figure (b) represents the effects of one cycle in the operation of a reversible heat engine. The temperatures of the hot and cold 

reservoirs are assumed respectively identical to those of process (a). Out of the amount of heat 𝑄ℎ  received from the hot 

reservoir, this optimally efficient engine produces the maximum possible amount of work consistent with its operating 

conditions 𝑄ℎ, 𝑇ℎ, and 𝑇𝑐, namely 𝑊 = 𝑄ℎ𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = 𝑄ℎ[(𝑇ℎ − 𝑇𝑐)/𝑇ℎ], and transfers the difference 𝑄𝑐 = 𝑄ℎ − 𝑊 to the 

cold reservoir. The work output 𝑊 appears in the form of an increase in the potential energy of some mechanical reservoir. 

The reversible label attached to this engine’s operation is a consequence of the fact that the initial condition can be restored by 

the simple expedient of using 𝑊 to drive the inverse cycle, i.e. to run the engine in reverse. 

Irreversible process (c) is the one produced when process (b) is followed by, or concatenated with, a frictional work-degrading 

step through which the work generated in the former ends up as an equivalent amount of heat in the cold reservoir. To understand 

the irreversibility of process (c) let us recognize that four are the bodies taking part in the concatenation of processes there 

depicted: The working substance, the heat reservoirs, and the mechanical reservoir. The working substance in a heat engine, a 

role played by steam in most engines, by air in some others, or an ideal gas in most theoretical discussions- is, as known, the 

thermal bridge connecting the hot and cold reservoirs, and on reason of this and its volume changes, the origin of the work 

output of the engine. At the conclusion of the said work-degrading process two of those four bodies, namely the working 

substance and the mechanical reservoir are found in their respective initial conditions, and the other two, namely the heat 
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reservoirs, in conditions different to the ones they originally had. That no change remains in the working substance finds 

explanation in the fact that it returns to its initial condition at the conclusion of each and every one of the engine’s cycles of 

operation. The conclusion of process (b) is actually signaled by the return of the working substance to its initial condition. That 

no change remains in the mechanical reservoir finds explanation in the fact that an identical amount of work to that it received 

from engine (b) has been retrieved from it to be degraded as heat at the temperature of the cold reservoir. In regard to the hot 

reservoir it is at once seen that the only change by it experienced is the release in process (b) of an amount of heat 𝑄ℎ. The cold 

reservoir experiences, on its part, two changes. The first one, clearly depicted in Figure (b), consists in it receiving an amount 

of heat 𝑄𝑐 from the working substance, with the second change consisting in it receiving an additional amount of heat 𝑊 from 

the work-degrading step, for a total amount of heat 𝑄ℎ = 𝑄𝑐 + 𝑊. The fact that the concatenation of processes depicted in (c) 

reduces to the transfer of 𝑄ℎ from the hot to the cold reservoir makes it identical in its effect to irreversible process (a), and just 

like in process (a), restoration of the initial condition in (c) demands, on reason of the absence of W in the mechanical reservoir, 

the concourse of the impossible process represented by the spontaneous transit of 𝑄ℎ from the cold to the hot reservoir. The 

fact that the insertion of a reversible refrigerator between the heat reservoirs is incapable of producing complete reversion has 

already been explained above. 

Before the work degrading step engine (b) was reversible. As long as W is available in the mechanical reservoir all we have to 

do to restore the initial condition is retrieve it and use it to propel the inverse cycle. After the loss of 𝑊 via the frictional process, 

engine (b) is irreversible. According to these results the reversible condition of engine (b) requires the continuous availability 

of 𝑊 to guarantee the restoration of the initial condition. As soon as this work is no longer available the possibility of restoration 

of the initial condition, and with it the reversible condition of this engine, disappears.  

The previous notion has already been reported and applied to a number of problems, though not the one herein dealt with, in a 

number of publications (Íñiguez & Íñiguez 2004; Íñiguez 2011, 2013, 2014a, 2014b). 

3. Reversibility in Heat Engines Means Work-Availability and Optimal Efficiency 

The previous argument, even if conducted around an optimally efficient engine, stressed the connection between reversibility 

and work availability. The present argument will show that both: optimal efficiency and work availability need to be satisfied if 

a heat engine is to be called reversible.  

Let us then us center our attention on some heat engine with operating conditions 𝑄ℎ, 𝑇ℎ, and 𝑇𝑐 identical to those of the 

previous arguments, and let us assume that on reason of our failure to prevent direct flow of heat from the hot to the cold 

reservoir (Pitzer & Brewer, p. 95, 1961), a portion of the heat released by the hot reservoir manages to reach the cold reservoir 

bypassing the work-producing path offered by the volume changes of the working substance, and that on reason of this we are 

left with a decreased engine’s work output 𝑊′, 𝑊′ < 𝑊, where 𝑊, as before noted, represents the maximum work output for 

such an engine i.e., 𝑊 = 𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄ℎ. Let us now inquire about the effect to be produced when an optimally efficient refrigerator 

working between the same temperatures is propelled with this decreased amount of work. Fed with 𝑊′ the refrigerator will be 

capable of extracting from the cold reservoir an amount of heat equal to 𝑄𝑐
′ = 𝑊′[𝑇𝑐/(𝑇ℎ − 𝑇𝑐)]. The ratio between this 

expression and the one corresponding to the refrigerator being fed with the optimally efficient engine’s work output W, namely 

𝑄𝑐 = 𝑊[𝑇𝑐/(𝑇ℎ − 𝑇𝑐)] , takes the form 𝑄𝑐
′ 𝑄𝑐 =⁄ 𝑊′ 𝑊⁄ . The fact that 𝑊′ < 𝑊  implies 𝑄𝑐

′ < 𝑄𝑐 . Decreased heat 

extraction follows the feeding of the refrigerator with decreased amounts of work. The quotient of works appearing in the 

previous equation doubles, it should be noted, as a quotient of efficiencies i.e., 𝑊′ 𝑊⁄ = (𝜂′𝑄ℎ) (𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄ℎ) = 𝜂′/𝜂𝐶𝑎𝑟𝑛𝑜𝑡⁄ , 

with 𝜂′ representing the efficiency of the engine under consideration. The limit values of the 𝑊′ 𝑊⁄  quotient: zero for the 

irreversible condition represented by 𝑊′ = 0, and 1 for the optimally efficient one represented by 𝑊′ = 𝑊, suggests the 

introduction of the parameter to be here called the ‘reversibility degree’, defined as 𝜙 = 𝑊′/𝑊 = 𝜂′/𝜂𝐶𝑎𝑟𝑛𝑜𝑡, to be used for 

the quantification of the fraction of the initial condition susceptible of restoration. Consider, for example, a heat engine working 

within the following operating conditions (200 J, 600 K, 300 K, 0.2) given in the order (𝑄ℎ,𝑇ℎ, 𝑇𝑐 , 𝜂′). From this data it follows 

that 𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = 0.5, 𝑊 = 100 J, 𝑄𝑐 = 100 J, 𝑊′ = 40 J and 𝑄𝑐,𝑖𝑟𝑟
′ = 𝑄ℎ − 𝑊′ = 160 J. Note that this last magnitude 

quantifies the heat discharged by this engine to the cold reservoir. This amount of heat 𝑄𝑐,𝑖𝑟𝑟
′  is larger than 𝑄𝑐 in precisely the 

difference 𝑊 − 𝑊′ = 60 J corresponding to the amount of work this inefficient operation falls short of its maximum possible 

on reason of the above assumed direct flow of heat between the heat reservoirs; this difference is the so-called lost-work . 

Recognition of the fact that here the initial condition is represented by a hot reservoir with a shareable amount of heat of 200 J 

will allow us to understand why the reversibility degree of this engine amounts to 𝜙 = 𝑊′/𝑊 = 40/100 = 0.4 or 40%. This 

is so because the previously noted refrigerator fed with the 40 J of work outputted by this engine can extract from the cold 

reservoir an amount of heat equal to 𝑄𝑐
′ = 40[300/(600 − 300] = 40 J. That this amount of heat, alongside the dissipated 

work in the amount of 40 J, end up replenishing the hot reservoir with 80 J out of the originally 200 J by it released, means a 

(80 200⁄ ) ∙ 100 = 40% restoration of the initial condition. 40% reversible, it should be understood, means 60% irreversible, 

and any irreversibility whatsoever, however small, means failure of restoration of the exact initial condition. Reversibility for 

this engine, a condition represented by 𝜙 = 1, or, equivalently, by 𝑊′ = 𝑊, requires the engine to be optimally efficient as it 

is only in this case that the engine will output the precise amount of work, 𝑊 = 100 J, required by the refrigerator to extract 
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from the cold reservoir an amount of heat 𝑄𝑐 = 𝑊[𝑇𝑐/(𝑇ℎ − 𝑇𝑐)] = 100(300/300) = 100 J identical to that previously 

transferred by this optimally efficient engine to this reservoir, and if so, transfer back to the hot reservoir an amount of heat 

𝑄𝑐 + 𝑊 = 100 + 100 = 200 J identical to that originally released by the hot reservoir. For a spontaneous process to be called 

reversible two conditions are then to be met: optimal-efficiency and the permanence of its work output. Failure to comply with 

both of these conditions, be it on reason of inefficiency or of work unavailability, leads, inevitably, to irreversibility understood 

as the inability of recuperating the exact initial condition. For 0 ≤ 𝜙 < 1, or equivalently for 𝑊′ < 𝑊 , the operation is 

irreversible whether or not the work output remains available. For 𝜙 = 1 the operation can be called reversible as long as W 

remains available. This last statement, which can also be expressed by saying that optimal efficiency is not synonymous with 

reversibility, is further discussed in the following section.  

It has to be acknowledged that the discussion just presented is a simple conceptual extension from that forwarded by 

Carnot nearly two centuries ago via the following succinct discussion which makes reference to the concatenation of an 

optimally efficient heat engine (no lost-work) with its inverse cycle, operations these taking place between two bodies A 

and B acting as hot and cold reservoirs, respectively, via the transfer between them of a given amount of caloric:  

By our first operations there would have been at the same time production of motive power and transfer of caloric 

from the body A to the body B. By the inverse operations there is at the same time expenditure of motive power and 

return of caloric from the body B to the body A. But if we have acted in each case on the same quantity of vapor, if 

there is produced no loss either or motive power or caloric, the quantity of motive power produced in the first place 

will be equal to that which would have been expended in the second, and the quantity of caloric passed in the first 

case from the body A to the body B would be equal to the quantity which passes back again in the second from the 

body B to the body A; so that an indefinite number of operations of this sort could be carried on without in the end 

having either produced motive power or transferred caloric from one body to the other…so that these two series of 

operations annul each other, after a fashion, one neutralizing the other (Carnot, 1960/1824, pp. 11, 19). 

4. Optimal Efficiency Is Not a Synonym of Reversibility 

When reference is made to a reversible engine what is usually meant is an optimally efficient engine, i.e. one operating with 

Carnot’s or so-called reversible efficiency. Out of all the engines working between the same hot and cold reservoirs it is this 

engine the one that manages to transform into work the largest fraction of every unit of heat made available by its hot reservoir. 

The efficiency of any given engine, it should be recognized, is a property of the engine and if so independent, among other 

things, of the destiny or final use of its work output. In other words, an optimally-efficient engine will keep efficiently 

transforming heat into work oblivious to whether its work output is being accumulated in a mechanical reservoir, or degraded 

into heat at the temperature of its cold reservoir or diverted to some other use. But even if the engine’s efficiency experiences 

no change on reason of the different work-destinies previously described, the condition of this engine indeed does. In this regard 

let us recognize the following scenarios, 1) when the work output is directed to and remains in the engine’s associated 

mechanical reservoir, the engine is reversible. As already explained, the reason for this is that the exact initial condition can be 

recuperated by the simple expedient of retrieving the work available in the mechanical reservoir and feeding it to the inverse 

cycle, 2) If the work output of this optimally-efficient engine is for whatever reason not available then the engine is irreversible; 

this for the simple reason that there is no work with which to propel the inverse cycle. If we attempt to describe this situation 

using common thermodynamic terminology we might end up talking about an irreversible engine working at the reversible 

efficiency. The previous description, which on reason of its contradictory nature appears nonsensical, originates in the incorrect 

position of making ‘optimally-efficient’ a synonym of ‘reversible’. We have grown accustomed to take as certain the notion that 

any heat engine working at Carnot’s efficiency is a reversible engine. As shown above, this identification is not always correct. 

As soon as the expression 𝜂 = (𝑇ℎ − 𝑇𝑐)/𝑇ℎ is referred to as Carnot’s efficiency and any engine working at such efficiency as 

an optimally-efficient engine, the contradictory statement above presented could be favorably replaced by that referring to the 

irreversibility of an optimally-efficient engine. 
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