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ABSTRACT 
An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex 
electromagnetic induction is proved theoretically. An experimental technique for defining a location of a cross 
crack is offered. 
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1. Introduction 
Developing efficient and highly precise methods for di- 
agnosing products is a relevant science task: non-de- 
structive testing allows defining timely defects of ele- 
ments of important constructions. There are several me- 
thods of non-destructive testing: magnetic-particle, ed- 
dy-current, liquid penetrant, acoustic, optical, radiation 
[1,2]. The Shock Pulse Method is widely applied [3], 
which is based on using the connection between natural 
frequencies of elastic oscillation and physical mechanical 
properties of materials and products. At the same time, 
piezoelectric accelerometers are used for transforming 
mechanical oscillation into electric signals. It is well 
known that their applying has some difficulties: signal 
filtration depends on frequency response of an accelero-
meter and the way it is set up [3].  

The authors from Kazan [4] considered the opportuni-
ty of applying an ultrasonic method to the diagnosis of 
rods in their work. A way to define a rode defect by ana-
lyzing the spectrum of fundamental frequencies is of-
fered. The analysis implies comparing the oscillation 
spectrums of a defective product with ones defect free.  

Akhtyamov A.M. and Karimov A. R. [5] offered a 
method allowing defining the location of a crack in a rod 
by natural frequencies of longitudinal oscillation in their 
article. Cracks are a kind of springs. At the same time, a 

construction observed is modeled by a system of solid 
bodies linked by springs. Direct and inverse problems 
were examined for systems with one and two degrees of 
freedom.  

In this work, an essentially new method is offered, 
which lets define experimentally frequencies of the nor-
mal mode of a rod’s longitudinal oscillation and deter-
mine the location of a crack.  

2. Modeling of Processes and Theoretical 
Analysis 

Parts of a rod shape are often used in engineering: dif-
ferent shafts, axes of wheel sets, stocks, etc. The main 
type of defects for them is cross-cracks. A rod with a 
cross-crack is modeled by the system shown in Figure 1. 
The left part is considered to be elastically deformable, 
whereas the right part is a solid body and is fixed. We 
simulate a crack by a spring, where its equivalent stiff-
ness is с. The total length of a rod is L. The unknown 
coordinate characterizing the location of a crack is zL . 

The natural oscillation in the system shown in Figure 
1 can be initiated by a stroke impact from the left on the 
deformable part. In this case, the left part of the system 
moves as a solid, also deformations as longitudinal os-
cillation arise in it. 

Let us write down boundary condition for the left part  
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Figure 1. The model of a rod with a crack. 

 
of the rod: 
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where ( ),U z t  is the displacement function, Е is the 
elastic modulus; S is the area of a cross section of a rod. 

We consider quasisolid motion of a rod (without any 
internal deformations). The differential equation looks 
like this if you do not consider the mechanical resistance: 

0 0mU cU= − .           (2) 

The quasisolid motion of a body occurs with a fre-
quency: 

0
c
m

ω = .              (3) 

Since zm SLρ= , where ρ  is the density of a rod 
material. We obtain: 

0 2
0

,  or  z
z

c cL
SL S

ω
ρ ρ ω

= = .       (4) 

However, it is impossible to define zL  using just the 
Equation (4), because the stiffness of the equivalent 
spring с is unknown. It depends on the size and shape of 
a crack, therefore cannot be assigned in advance. 

Let us consider now elastic oscillation initiated in a 
rod taking into account the linear internal resistance, 
which is characterized by the coefficient β : 

2 2

2 2 2

1 0U U U
tz a t

β∂ ∂ ∂
− − =

∂∂ ∂
,        (5) 

where 2 Ea
ρ

= . 

We apply the Fourier method to the Equation (5): 

( ) ( )
1

n n
n

U q t Z z
∞

=

= ∑ .          (6) 

Here ( )nq t  is generalized coordinates. Let us define 
the eigen amplitude functions on the left end from the 
boundary condition (1): 

( ) ( )cos , 1,2,3,n
n

p z
Z z n

a
= = 

,     (7) 

where np  is natural frequencies of elastic oscillation. 

Taking into account the terms of orthogonality: 

0

;
d 2

0;

zL z

k n

L k n
Z Z z

k n

 == 
 ≠

∫ , 

we obtain the system of independent ordinary differential 
equations: 

{ }2 0, 1, 2,3,k k k kq q p q kβ+ + = = 
 .     (8) 

Let us define the set of damped frequencies: 

( )
2

2 , 1, 2,3,
4k kp kβω = − =  .        (9) 

Using the boundary condition on the right end of the 
part 1, we obtain the equation of frequencies for damping 
oscillation: 

ctgn n zL
ES

ac a
ω ω

=  .            (10) 

Let us consider the Equations (4) and (10) together 
with 1n = . If we eliminate the stiffness of an equivalent 
spring с, we obtain: 

1 1
2
0

ctg z

z

a L
aL

ω ω
ω

= .             (11) 

The values of frequencies 0ω  and 1ω  can be de-
fined experimentally. The concept of experimental de-
fining of rod’s natural frequencies in case of longitudinal 
oscillation is described below. Using given values of 0ω  
and 1ω , we can define zL , which is the location of a 
crack, by solving the Equation (11) numerically (or 
graphically).  

In case of absence of a crack, quasisolid motion of any 
of its parts is excluded. Then, the first frequency of 
damping elastic oscillation can be defined by the well- 
known equation: 

2 2

1
π
2 4

a
L

βω  = − 
 

.          (12) 

Thus, if the first frequency measured in an experiment 
coincides with the calculated value (12), we can conclude 
that the defect as a longitudinal crack is absent.  

Note that the linear theory does not always take into 
account internal friction properly. Besides, the precise 
value of a coefficient β  can be unknown for a given 
material. Therefore, we can calculate 1ω  approximately 
using the equation:  

1 1
π
2

ap
L

ω ≈ = .            (13) 

3. Transformation of Longitudinal  
Oscillation of a Rod into Electric Signals 

Let us state the concept of the electromagnetic way of 



A. K. TOMILIN, E. V. PROKOPENKO 

OPEN ACCESS                                                                                        WJM 

39 

defining natural frequencies of longitudinal oscillation of 
an elastic rod. We use the recently discovered potential 
component of the magnetic field [6-9]. It is described by 
the scalar functions *H  or *B , that is why the term 
“scalar magnetic field” (SMF) is used. In contrast to a 
vector (vortex) component of a magnetic field, the scalar 
magnetic field is potential. 

Conditions, under which a SMF can be created, and 
experiments with it are described in details in the mono-
graph [6]. In particular, it is shown there that such a field 
can be created by a system of permanent magnets or a 
system of current circuits, for example a toroidal coil. 
The areas of a SMF are characterized by a sign: positive 
or negative. In a positive SMF, the longitudinal electro-
magnetic force is directed along the current, in a negative 
SMF, it is against the current.   

In the monograph [6], it was offered to rewrite the ge-
neralized law of the electromagnetic force in differential 
form: 

( ) ( )* *
c cH B= ∇× × + ∇f H B ,     (14) 

where f  is bulk density of magnetic force (Lorentz 
force); сH  is a vector of magnetic field strength of an 
intrinsic vortex magnetic field in a current-carrying con-
ductor; B  is magnetic flux density of an external vector 
magnetic field; B∗  is magnetic flux density of an ex-
ternal SMF; сH ∗  is magnetic field strength of an intrin-
sic SMF of a conductor. 

It can be seen from the Equation (14) that transverse 
electromagnetic force is formed due to interaction of an 
intrinsic vector magnetic field of a conductor with an 
external vector magnetic field, whereas longitudinal 
force is formed due to interaction of an intrinsic scalar 
magnetic field of a conductor with an external SMF. 
Such an approach corresponds well to the common field 
theory and the Helmholtz’s theorem, because the super-
position principle of solenoidal and potential components 
holds. 

The certain similarity between phenomena of vortex 
and irrotational nature is observed. Along with the Am-
pere’s force, which is perpendicular to the current, the 
magnetic force was discovered, which is directed along 
the current or against it depending on the sign of an ex-
ternal SMF. The phenomenon of irrotational electro-
magnetic induction [6], which is described by the law 
similar to the Faraday’s law, was discovered. It has been 
determined theoretically and experimentally that elec-
tromotive force (EMF) of induction appears in a linear 
conductor while its translation in an external SMF. If we 
close the ends of a conductor, then the density current 
will be induced in an electrical circuit:  

( ) ( )2

1

,
d

z

z

U z t
j B z z

L t
σ ∗ ∂

=
∂∫ ,      (15) 

where σ  is conductivity of an electrical conductor. Re-
sistance of a closed circuit is omitted. 

This phenomenon can be used for experimental study-
ing of the process of longitudinal oscillation in a resilient 
rod. Let us look at the task on longitudinal oscillation of 
an electrically conductive rod in a SMF. We assume that 
an external scalar magnetic field is created on some (ac-
tive) section of a rod 2 1z z z∆ = −  by induction *B  
(Figure 2). Let us consider the perfect case, when a SMF 
is fixed and homogeneous, and the boundaries of the 
active section are obviously determined. The ends of the 
rod are closed by an ideal electrical circuit with a fre-
quency spectrum analyzer in it. 

Let us write the differential equation for longitudinal 
oscillation of a resilient electrically conductive rod, 
based on the D’Alembert’s principle: 

2 2

2 2d d d d 0.cdHU U US z ES z S z B S z
t dzt z

ρ βρ
∗

∗∂ ∂ ∂
− + − =

∂∂ ∂
 

(16) 
The first term in the equation represents the fictitious 

force, the second term characterizes the elastic force, and 
the third one corresponds to the internal dissipation. The 
last term in the equation represents the electromagnetic 
force according to the law (14). 

In the works [6-8], it is shown that the SMF cH ∗  of a 
linear rod can be defined using the law similar to the Bi-
ot-Savart-Laplace law: 

1 1 .
4πc
jH

z z z
∗  = − ′ ′∆ − 

 

Consequently: 

( )2 2

1 1d d .
4πc
jH z

zz z
∗

 
= + 

′′∆ −  
 

The beginning of the crosshatched coordinate coin-
cides with the left boundary of the active section. And 

1z z z′ = −  Consequently, the equation for longitudinal 
magnetic force can be written like this: 

( )
*

2 2

1 1d d
4π
jF B S z

zz z
∗

 
= + 

′′∆ −  
. 

Taking into account the Equation (15), we have: 
 

 
Figure 2. Oscillation of the rod in an external SMF. 
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∫  

(17) 

Note that this force has infinite values at the ends of 
the active section. This is because we used the model of a 
linear conductor, i.e. we omitted transverse sizes when 
calculating the SMF. Moreover, it was assumed that the 
SMF declines unevenly from some value to zero at the 
boundaries of the active section. Later, we will analyze a 
case close to real, when the SMF is heterogeneous and its 
strength equals zero at the ends of the active section. In 
this case, there is no uncertainty when calculating the 
longitudinal magnetic force.  

Taking into account the Equation (17), the Equation 
(16) looks like this: 
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Let us apply the Fourier method using decomposition 
(6). We get: 
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Using amplitude functions (7) and the terms of ortho-
gonality, we get the system of ordinary differential equa-
tions: 
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We introduce some notation: 
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We get: 
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Let us factorize the system (20) and rewrite it, so the 
first equation contains the first term of the sum, and the 

second one has two terms, etc.: 
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 (21) 
We can extract the equations for damped frequencies 

from here: 
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where 
2

1
2 2πk k k

z

Bh
LL

σβ γ α
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is a damping factor of kth partial oscillation. 
It can be seen that the process is polyharmonic, i.e. 

there is oscillation of many frequencies. Every oscillation 
corresponds to a certain electrical signal appeared in a 
closed circuit. Using a frequency analyzer spectrum, we 
can extract and measure every frequency that is pre-
sented in an experiment. Thus, we can use (11) to calcu-
late the length Lz, which defines the location of a crack.  

It can be seen from the Equations (20) and (21) that 
there is no electromagnetic effect on such oscillation at 

0kγ = . Consequently, a corresponding electrical signal 
does not appear. It means that such oscillation will not be 
recognized by a frequency analyzer. In order to eliminate 
this case in an experiment, we need to change the loca-
tion or the width of the active section several times and 
measure accurately frequency, which is used (usually it is 

1ω ) by the spectrum analyzer. 
Thus, it was shown that it is possible to define the 

presence and location of a transverse crack in an electri-
cally conductive rod. However, the case considered is 
idealized: in reality, it is impossible to create a homoge-
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neous SMF with sharply defined boundaries. 
Let us analyze a case, which is more common, when 

the SMF is heterogeneous ( ).B B z∗ ∗=  Generally, 
maximum one SMF is distinguished at a large gradient of 
its induction. Therefore, the boundaries of effective value

*B area can be defined quite accurately. Let us write the 
integral differential equation for natural longitudinal os-
cillation in the resilient part of a linear rod in this case:  

( )
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2
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2 2

2 2
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2 2

1 1 d 0.
4π
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z
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If we apply the Fourier method, we get: 
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 (24) 

We use eigen amplitude functions (7). We multiply the 
Equation (24) by kZ  and integrate it from 0 to zL . The 
magnetic term is integrated from z1 to z2 like in the pre-
vious case. Applying the terms of orthogonality, we get 
the system of ordinary differential equations: 
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Let us introduce some notation: 
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Taking into account the notation introduced, the Equa-
tions (25) will look like this: 
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We factorize the system of Equations (28): 
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We write the equation for the set of natural damped 
frequencies: 

( )
2 2

2
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4k k
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where 

1
2 2πk k k

z

h
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is a damping factor of kth partial oscillation. 
Let us analyze the particular case. Let the external 

SMF be distributed within the active section according to 
the following function: 

( ) ( )2* 2B z z z zλ′ ′ ′= ∆ − .          (31) 

Here λ  is some dimensional constant, which defines 
maximum value of SMF induction. The diagram (31) is 
shown in Figure 3. 

It can be seen on a diagram that the external SMF 
( )B z∗ ′  equals zero at the ends of the active section, and 

is maximum in the center of the section. It corresponds 
well to SMF distribution, which can be created by a 
couple of flat magnets [6]. In case of such distribution of 
SMF, there is no uncertainty when calculating the longi-
tudinal magnetic force.  

We can see from the Equations (28) and (29), that at 

( )
( )

( )
2

1

*
2 2

1 1 d 0, 1,2,3,
z

k k
z

Z B z z k
zz z

η
 
 = + = =
 ′′∆ − 

∫ 
 

(32) 
electromagnetic effect on a kth oscillation is absent. 
Therefore, at a given location and width of an active sec- 
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Figure 3. The distribution of a SMF in an active section. 

 
tion, electrical signals, which correspond to some shapes 
of oscillation, are not present. In order to record effec-
tively all natural frequencies, we need to change the lo-
cation of the active section or its width several times. 

The differential Equations (28) are more accurate 
comparing with (20), because they take into account the 
real distribution of a SMF. 

4. The Concept of the Experiment 
We describe the experimental installation and the me-
thods of the experiment. The part analyzed has to be 
made out of electrically conductive material and have a 
shape similar to a rod. The geometry of a transverse sec-
tion can be different if cross section dimension is signif-
icantly smaller than the length of the part. In addition, the 
cross sectional dimensions have to meet another re-
quirement: an external SMF has to be as homogeneous as 
possible within the range of transverse coordinates. 

The part is hung horizontally on elastic ropes. A ver-
tical stop clamp fixes one of the part’s ends. It is neces-
sary to eliminate electric contact between the part and the 
clamp. Conductors with small impedance are attached to 
the ends of the rod, which are enclosed in a frequency 
spectrum analyzer. The instrument used has to register 
small current impulses (µA) in a range of low frequen-
cies (kHz). 

The conditions of SMF initiation, its characteristics 
and topology are described in the monograph [6]. Small 
areas of the SMF are formed at the edges of a system of 
two flat magnets (Figure 4). We can define the sizes of 
the SMF area using for example images made out of iron 
filings (Figure 4(a)). The “empty” areas on the ends of 
the magnet couple is SMF. Magnetic field of such a sys-
tem is equivalent to the magnetic field of a linear current 
with finite length: it has both vortex and potential com-
ponent. The gradient of the SMF is directed along equiv- 

 
(a)                          (b) 

Figure 4. (а) The photograph of a field created by a couple 
of flat magnets; (b) The distribution of the SMF created  
by a couple of flat magnets. 
 
alent current (shown as the arrow (Figure 4(b))). That 
defines signs of the SMF areas. 

In order to create a quite strong SMF, an inductor as a 
toroidal coil can be used. A vortex magnetic field in this 
case is concentrated inside of the coil, and a SMF of dif-
ferent signs is formed on the edges of the toroid. 

Cross sectional dimensions of the studying part cannot 
exceed sizes of the external SMF created by the inductor. 
The principal device of the experimental installation is 
shown in Figure 5. 

A rod hanging horizontally sets against a heavy vertic-
al wall. The end of the rod is fixed in a stop, so the rod 
cannot move away from the wall while testing. Conduc-
tors with small resistance are attached to the ends of the 
conductors, and are connected to a frequency analyzer. In 
the left side of the figure, there is a striker. Its transverse 
section has to exceed cross sectional dimensions of a part 
tested. This provides plane shift of sections of the rod at 
elastic oscillation. An inductor of a SMF is situated so 
the rod’s transverse section is entirely inside of the SMF 
in some areas. 

Let us describe the experiment technique (method) 
stage by stage. 

Define the location and the width of an active section 
for an inductor of SMF that is used. 

Create elastic oscillation by hitting horizontally the 
free end of the rod several times. 

Measure first several frequencies starting with the 
frequency of quasisolid motion. It is necessary to change 
the location of the inductor several times in order to 
record oscillation of several first shapes without missing 
any.  

Check if the first frequency coincides with the value 
calculated by the Equation (13). If yes, we conclude that 
there is no crack. 

Calculate zL  using the Equation (11) in a case, when 
the first experimental frequency differs significantly 
from one calculated by the Equation (13). 

Let us give a numerical example. The following para-
meters are given: the maximum value of induction of an 
external SMF is ( ) 1T;B z∗ = the conductivity of steel is  

67,69 10 ;
m

σ Ω
= ⋅  the density of steel is 

3

kg7800 ;
m

ρ =  

the elastic modulus of steel is 112,1 10 PаE = ⋅ ; the  
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Figure 5. The scheme of an experimental installation. 

 
length of the rod studied is 0.15mL = . 

We calculate the first frequency of oscillation of the 
defect free rod using the Equation (13): 

1
π 54308.867Hz 54.3kHz
2

ap
L

= = = . 

We assume that the following frequencies were de-
fined during the experiment: 

1 1
0 tg 0.46kHzz

z

a L
L a
ω ω

ω = ⋅ =  

and 1 60kHzω = . 
We solve the Equation (13) numerically and get: 

0.1357mzL = . 

5. Conclusion 
Physical phenomena connected with a potential compo-
nent of a magnetic field are discovered quite recently. 
The knowledge on new electromagnetic phenomena al-
lows us to find innovative technical and technological 
solutions of applied problems. 

The method of non-destructive testing, which we of-
fered, uses the phenomenon of non-vortex electromag-
netic induction. That makes it fundamentally new and 
differs from other known methods. It allows carrying out 

non-destructive testing of a rod using a quite simple ex-
perimental device, and defining the location of a crack. 

The work is carried out within the frameworks of the 
RFFR grant No. 13-01-90904. 
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